如下图所示。(二叉堆)是一个数组,它可以被看成一个近似的完全二叉树。树上的每一个结点对应数组中的一个元素。
A.length给出数组元素的个数,A.heap-size表示有多少个堆元素存储在该数组中。
树的根结点是A[1],这样给定一个结点的下标i,我们很容易计算得到它的父结点、左孩子和右孩子的下标
PARENT(i) return i/2 //向下取整 LEFT(i) return 2i RIGHT(i) return 2i+1
二叉堆可以分为两种形式:最大堆和最小堆。在这两种堆中,结点的值都要满足堆的性质
在最大堆中,最大堆性质是指出来根以外的所有结点i都要满足:
A[PARENT(i)]>=A[i]
也就是说,某个结点的值之多与其父结点一样大。因此,堆中的最大元素存放在根结点中。而最小堆性质刚好相反。
在堆排序算法中,我们使用的是最大堆。最小堆通常用于构造优先队列。
维护堆的性质
MAX-HEAPIFY是用于维护最大堆性质的重要过程。
它的输入为一个数组A和一个下标i。在调用MAX-HEAPIFY的时候,我们假定根结点为LEFT(i)和RIGHT(i)的二叉树是最大堆。
这时A[i]有可能小于其孩子,违背了最大堆的性质。MAX-HEAPIFY通过让A[i]的值在最大堆中“逐级下降”,从而使得以下标i为根结点的子树重新遵循最大堆性质。
MAX-HEAPIFY(A,i) l=LEFT(i) r=RIGHT(i) if l<=A.heap-size and A[l]>A[i] largest=l else largest=i if r<=A.heap-size and A[r]>A[largest] largest=r if largest!=i exchange A[i] with A[largest] MAX-HEAPIFY(A,largest)
下面是执行MAX-HEAPIFY(A,2)的情况
在程序的每一步,从A[i],A[LEFT(i)]和A[RIGHT[i]]中选出最大的,并将其下标存储在largest中。
如果A[i]是最大的,那么以i为结点的子树已经是最大堆,程序结束。否则,最大元素是i的某个孩子结点,则交换A[i]和A[largest]的值。
交换之后,下标为largest的结点的值是原来的A[i],以该节点为根的子树又可能违反最大堆性质。因此,需要对该子树递归调用MAX-HEAPIFY。
对于一个树高为h的结点来说,MAX-HEAPIFY的时间复杂度是O(h)
建堆
我们可以用自底向上的方法利用过程MAX-HEAPIFY把一个大小为n=A.length的数组转换成最大堆。
子数组A(n/2+1...n)中的元素都是树的叶结点,每个叶结点都可以看成包含一个元素的堆,所以只需要对树中的其它结点调用一次MAX-HEAPIFY
BUILD-MAX-HEAP(A) A.heap-size=A.length for i=A.length/1 downto 1 MAX-HEAPIFY(A,i)
堆排序算法
初始时候,堆排序算法利用BUILD-MAX-HEAP将输入数组A[1...n]建成最大堆。
因为数组中的最大元素总在根结点A[1]中,通过把它与A[n]进行交换(把A[1]放到数组最后),我们可以让该元素放在正确的位置。
这时候,我们从堆中去掉结点n(通过减少A.heap-size的值来实现),原来跟的孩子结点仍然是最大最,而新的根结点可能会违背最大堆性质,因此我们需要调用MAX-HEAPIFY(A,1)在A[1...n-1]上构造一个新的最大堆。
堆排序算法会不断重复这一过程,直到堆的大小从n-1降到2
HEAPSORT(A) BUILD-MAX-HEAP(A) for i=A.length downto 2 exchange A[1] with A[i] A.heap-size=A.heap-size-1 MAX-HEAPIFY(A,1)
实现与测试代码
#include <iostream>
#include <algorithm>
using namespace std;
int heap_size;
void max_heapify(int arr[],int i)
{
int l=2*i;
int r=2*i+1;
int largest;
if(l<=heap_size&&arr[l]>arr[i])
largest=l;
else
largest=i;
if(r<=heap_size&&arr[r]>arr[largest])
largest=r;
if(largest!=i)
{
swap(arr[i],arr[largest]);
max_heapify(arr,largest);
}
}
void build_max_heap(int arr[],int length)
{
heap_size=length;
for(int i=length/2;i>=1;--i)
max_heapify(arr,i);
}
void heapsort(int arr[],int length)
{
build_max_heap(arr,length);
for(int i=length;i>=2;--i)
{
swap(arr[1],arr[i]);
heap_size--;
max_heapify(arr,1);
}
}
int main()
{
int arr[]={0,4,1,3,2,16,9,10,14,8,7};
heapsort(arr,10);
for(int i=1;i<=10;++i)
cout<<arr[i]<<' ';
cout<<endl;
system("pause");
}