机器学习笔记1:机器学习基础知识——练习题

这篇博客详细探讨了机器学习的基本概念,包括定义、应用领域、监督与无监督学习任务,强调了强化学习在机器人导航中的应用以及聚类算法在客户分组中的作用。此外,还讨论了监督学习在垃圾邮件检测中的应用、在线学习系统和核外学习的含义,以及机器学习中的相似度依赖预测。文章深入浅出地解释了模型参数与超参数的区别,并指出机器学习面临的挑战,如过拟合及解决方案。最后,阐述了测试集和验证集在模型评估中的重要作用以及误用测试集调参可能导致的问题。
摘要由CSDN通过智能技术生成

目录

1.如何定义机器学习?

2.机器学习在哪些问题上表现突出,你能给出四种类型吗?

3.什么是被标记的训练数据集?

4.最常见的两种监督学习任务是什么?

5.你能举出四种常见的无监督学习任务吗?

6.要让一个机器人在各种未知的地形中行走,你会使用什么类型的机器学习算法?

7.要将顾客分成多个组,你会使用什么类型的算法?

8.你会将垃圾邮件检测的问题列为监督学习还是无监督学习?

9.什么是在线学习系统?

10.什么是核外学习?

11.什么类型的学习算法依赖相似度来做出预测?

12.模型参数与学习算法的超参数之间有什么区别?

13.基于模型的学习算法搜索的是什么?它们最常使用的策略是什么?它们如何做出预测?

14.你能给出机器学习中的四个主要挑战吗?

15.如果模型在训练数据上表现很好,但是应用到新实例上的泛化结果却很糟糕,是怎么回事?能给出三种可能的解决方案吗?

16.什么是测试集,为什么要使用测试集?

17.验证集的目的是什么?

18.如果你用测试集来调超参数会出现什么错误?


1.如何定义机器学习?

答:机器学习是构建出利用数据进行学习的模型


2.机器学习在哪些问题上表现突出,你能给出四种类型吗?

答:1.机器学习适合运用在没有算法可以解决的问题上,比如分类和回归。

2.四种类型:有监督学习 、无监督学习 、半监督学习 、强化学习


3.什么是被标记的训练数据集?

答:每个训练样本都有目标值or目标类别


4.最常见的两种监督学习任务是什么?

答:分类和回归


5.你能举出四种常见的无监督学习任务吗?

答:聚类、可视化、降维和关联规则学习


6.要让一个机器人在各种未知的地形中行走,你会使用什么类型
的机器学习算法?

答:强化学习


7.要将顾客分成多个组,你会使用什么类型的算法?

答:聚类or分类


8.你会将垃圾邮件检测的问题列为监督学习还是无监督学习?

答:监督学习


9.什么是在线学习系统?

答:在线学习系统能够进行增量学习,它能够快速适应不断变化的数据和自动系统,并能够处理大量数据。


10.什么是核外学习?

答:核外算法可以处理无法容纳在计算机主内存中的大量数据。核外学习算法将数据分成小批量并使用在线学习技术从这些小批量数据中学习。


11.什么类型的学习算法依

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值