目录
6.要让一个机器人在各种未知的地形中行走,你会使用什么类型的机器学习算法?
13.基于模型的学习算法搜索的是什么?它们最常使用的策略是什么?它们如何做出预测?
15.如果模型在训练数据上表现很好,但是应用到新实例上的泛化结果却很糟糕,是怎么回事?能给出三种可能的解决方案吗?
1.如何定义机器学习?
答:机器学习是构建出利用数据进行学习的模型
2.机器学习在哪些问题上表现突出,你能给出四种类型吗?
答:1.机器学习适合运用在没有算法可以解决的问题上,比如分类和回归。
2.四种类型:有监督学习 、无监督学习 、半监督学习 、强化学习
3.什么是被标记的训练数据集?
答:每个训练样本都有目标值or目标类别
4.最常见的两种监督学习任务是什么?
答:分类和回归
5.你能举出四种常见的无监督学习任务吗?
答:聚类、可视化、降维和关联规则学习
6.要让一个机器人在各种未知的地形中行走,你会使用什么类型
的机器学习算法?
答:强化学习
7.要将顾客分成多个组,你会使用什么类型的算法?
答:聚类or分类
8.你会将垃圾邮件检测的问题列为监督学习还是无监督学习?
答:监督学习
9.什么是在线学习系统?
答:在线学习系统能够进行增量学习,它能够快速适应不断变化的数据和自动系统,并能够处理大量数据。
10.什么是核外学习?
答:核外算法可以处理无法容纳在计算机主内存中的大量数据。核外学习算法将数据分成小批量并使用在线学习技术从这些小批量数据中学习。