一看数据范围,发现只有10,就想到了状压。
又很容易想到枚举行,再看要去选哪些列,因为题目说是十字处理,于是只用把行和列取 m a x max max就是一种方案,最后再对所有方案取最小值就是最后的答案。
直接去枚举行再看列显然超时。考虑优化。
考虑如何在枚举行的同时也把列的答案也处理出来。
设 f i f_i fi 表示 i i i 这个状态的行不选,必须要选出哪些列。
设 s i s_i si 表示第 i i i 行的气球状态。
则易得转移方程:
f i = f i − l o w b i t ( i ) ∣ s l o g ( l o w b i t ( i ) ) f_i=f_{i-lowbit(i)}|s_{log(lowbit(i))} fi=fi−lowbit(i)∣slog(lowbit(i))
最后考虑如何统计答案,设有函数 F ( x ) F(x) F(x) 表示 x x x 在二进制下 1 1 1 的个数。
显而易见
a n s = m i n ( a n s , m a x ( n − F ( i ) , F ( f i ) ) ) ans=min(ans , max(n-F(i) , F(f_i))) ans=min(ans,max(n−F(i),F(fi)))
至于如何实现 F F F 函数 ,c++里有专门的函数。
代码
#include<bits/stdc++.h>
using namespace std;
int t , m , n , f[1 << 20] , b[25];
char mp[25][25];
void solve()
{
cin >> n >> m;int ans = 1e9;
for(int i = 1;i <= n;i++)
{
b[i] = 0;
for(int j = 1;j <= m;j++)
{
cin >> mp[i][j];
if(mp[i][j] == '*')b[i] += 1 << (m - j);
}
}
for(int i = 1;i < (1 << n);i++)f[i] = f[i ^ (i & (-i))] | b[__builtin_ctz(i & (-i)) + 1];
for(int i = 0;i < (1 << n);i++)ans = min(ans , max(n - __builtin_popcount(i) , __builtin_popcount(f[i])));
cout << ans << endl;
}
signed main()
{
cin >> t;
while(t--)solve();
return 0;
}