给定两个单词(beginWord 和 endWord)和一个字典,找到从 beginWord 到 endWord 的最短转换序列的长度。转换需遵循如下规则:
每次转换只能改变一个字母。
转换过程中的中间单词必须是字典中的单词。
说明:
如果不存在这样的转换序列,返回 0。
所有单词具有相同的长度。
所有单词只由小写字母组成。
字典中不存在重复的单词。
你可以假设 beginWord 和 endWord 是非空的,且二者不相同。
示例 1:
输入:
beginWord = "hit",
endWord = "cog",
wordList = ["hot","dot","dog","lot","log","cog"]
输出: 5
解释: 一个最短转换序列是 "hit" -> "hot" -> "dot" -> "dog" -> "cog",
返回它的长度 5。
图的最小路径问题,把单词看作是图上的一个点,只有一个元素不同的单词才会有连线,找从start到end最小的路径,用BFS
双段BFS,分别从start和end同时开始遍历,每一次从预选搜索量小的开始BFS(为了减小搜索量)
如果碰到已经被另一段访问过的元素(相遇),那么当前step就是最短路径,否则start到end不存在路径,每扩展下一层时step+1
tip:用哈希表存放字典,可以加快搜索速度,避免超时
class Solution {
public:
int ladderLength(string beginWord, string endWord, vector<string>& wordList) {
unordered_set<string> wordSet{wordList.begin(), wordList.end()};
//哈希,加快速度
if(wordSet.find(endWord) == wordSet.end()) return 0;
//存放begin搜索集合
unordered_set<string> beginSet{beginWord};
//存放end搜索集合
unordered_set<string> endSet{endWord};
int step = 1;
for(; !beginSet.empty();)
{
unordered_set<string> tempSet;
step++;
//beginSet中存放的是已经访问过的,在字典中除掉
for(auto s : beginSet)
wordSet.erase(s);
//beginSet中的字符串变换一个字符,如果在字典中存在,那么要访问
for(auto s : beginSet)
{
//变换字符
for(int i = 0; i < s.size(); i++)
{
string str = s;
for(char c = 'a'; c <= 'z'; c++)
{
//在i位置上更改字符
str[i] = c;
//这个字符串在字典中不存在
if(wordSet.find(str) == wordSet.end()) continue;
//如果相遇了
if(endSet.find(str) != endSet.end()) return step;
//如果在字典中存在并且不在另一端中,是要搜索的
tempSet.insert(str);
}
}
}
//beginSet存放每次搜索量少的那个集合,endSet存放搜索量大的那个集合
if(tempSet.size() < endSet.size())
beginSet = tempSet;
else
{
beginSet = endSet;
endSet = tempSet;
}
}
return 0;
}
};