指定起终点的最短路算法-Dijkstra标号法及其改进

源代码来源于司守奎老师《数学建模与算法》,本人加了一些注释供大家参考:

function [mydistance,mypath]=mydijkstra(a,sb,db);
% 输入:a—邻接矩阵(aij)是指i到j之间的距离,可以是有向的
% sb—起点的标号, db—终点的标号
% 输出:mydistance—最短路的距离, mypath—最短路的路径
%该算法是设定一个起点,找出此起点到其余各点的最短路即最短路径,最后找出所需终点的对应的数据,若能只算到设定的终点,算法将提高效率
n=size(a,1);% 1表示返回a的行数,如是2则表示返回a的列数
visited(1:n) = 0;
distance(1:n) = inf; % 保存起点到各顶点的最短距离

distance(sb) = 0; parent(1:n) = 0;
for i = 1: n-1
    temp=distance;
    id1=find(visited==1); %查找已经标号的点
    temp(id1)=inf; %已标号点的距离换成无穷
    [t, u] = min(temp); %找标号值最小的顶点,t为最小值。u为其位置即标号
    visited(u) = 1; %标记已经标号的顶点,即sb起点被标号
    id2=find(visited==0); %查找未标号的顶点
    for v = id2  %id2为一数列,此处for循环即以此取其中元素值
        if a(u, v) + distance(u) < distance(v)
            distance(v) = distance(u) + a(u, v); %修改标号值
            parent(v) = u;
        end
    end
end
mypath &
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值