计算机图形学 第六章 图形变换

计算机图形学 第六章 图形变换

这章一般只考一道题(10分左右)

数学基础

(都是线性代数的知识,这里略写)

齐次坐标: 将一个原本是 n n n 维的向量用一个 n + 1 n+1 n+1 维向量来表示

  • ( x 1 ,   x 2 ,   . . . x n ) (x_1,\,x_2,\,...x_n) (x1,x2,...xn) 的其次坐标表示为 ( h x 1 ,   h x 2 ,   . . . ,   h x n ,   h ) (hx_1,\,hx_2,\,...,\,hx_n,\,h) (hx1,hx2,...,hxn,h) ,其中 h h h 是一个实数;

  • 普通物理坐标与齐次坐标是一对多的关系

几何变换

要会写不同变换的矩阵

窗口区到视图区的坐标变换

需求: 实际的窗口区与视图区往往不一样大,需要从窗口区变换到视图区

6_12_16_12_2

变换公式: (就很简单的线性变化)(左式可以用右式表示,abcd 的值自己求一下)
{ x v − v x l = v x r − v x l w x r − w x l ( x w − w x l ) y v − v y l = v y r − v y l w y r − w y l ( y w − w y l ) { x v = a x w + b y v = c y w + d \left\{\begin{array}{} x_v-vxl=\frac{vxr-vxl}{wxr-wxl}(x_w-wxl) \\ y_v-vyl=\frac{vyr-vyl}{wyr-wyl}(y_w-wyl) \end{array}\right. \quad\quad \left\{\begin{array}{} x_v = ax_w + b \\ y_v = cy_w + d \end{array}\right. {xvvxl=wxrwxlvxrvxl(xwwxl)yvvyl=wyrwylvyrvyl(ywwyl){xv=axw+byv=cyw+d

二维齐次坐标变换

矩阵都要会写,尤其注意错切的变换特点,会画示意图

二位齐次坐标: 矩阵形式如下,每一个部分都有特殊含义:

  • [ a b d e ] \begin{bmatrix}a&b\\d&e\end{bmatrix} [adbe] 可以对图形进行 缩放旋转对称错切 等变换
  • [ c f ] \begin{bmatrix}c\\f\end{bmatrix} [cf] 是对图形进行 平移 变换
  • [ g h ] \begin{bmatrix}g&h\end{bmatrix} [gh] 是对图形作 投影 变换
  • [ i ] [i] [i] 是对图形整体进行 缩放 变换

请添加图片描述

基本变换

平移 [ x ′ y ′ 1 ] = [ 1 0 t x 0 1 t y 0 0 1 ] [ x y 1 ] = [ x + t x y + t y 1 ] = T ( t x , t y ) [ x y 1 ] \begin{bmatrix}x'\\y'\\1\end{bmatrix}= \begin{bmatrix}1&0&t_x\\0&1&t_y\\0&0&1\end{bmatrix} \begin{bmatrix}x\\y\\1\end{bmatrix}= \begin{bmatrix}x+t_x\\y+t_y\\1\end{bmatrix}= T(t_x,t_y)\begin{bmatrix}x\\y\\1\end{bmatrix} xy1 = 100010txty1 xy1 = x+txy+ty1 =T(tx,ty) xy1

缩放 [ x ′ y ′ 1 ] = [ s x 0 0 0 s y 0 0 0 1 ] [ x y 1 ] = [ s x x s y y 1 ] = S ( s x , s y ) [ x y 1 ] \begin{bmatrix}x'\\y'\\1\end{bmatrix}= \begin{bmatrix}s_x&0&0\\0&s_y&0\\0&0&1\end{bmatrix} \begin{bmatrix}x\\y\\1\end{bmatrix}= \begin{bmatrix}s_xx\\s_yy\\1\end{bmatrix}= S(s_x,s_y)\begin{bmatrix}x\\y\\1\end{bmatrix} xy1 = sx000sy0001 xy1 = sxxsyy1 =S(sx,sy) xy1

旋转:绕原点旋转 θ \theta θ 角: [ x ′ y ′ 1 ] = [ cos ⁡ θ − sin ⁡ θ 0 sin ⁡ θ cos ⁡ θ 0 0 0 1 ] [ x y 1 ] = [ x cos ⁡ θ − y sin ⁡ θ x sin ⁡ θ + y cos ⁡ θ 1 ] = R ( θ ) [ x y 1 ] \begin{bmatrix}x'\\y'\\1\end{bmatrix}= \begin{bmatrix}\cos\theta&-\sin\theta&0\\\sin\theta&\cos\theta&0\\0&0&1\end{bmatrix} \begin{bmatrix}x\\y\\1\end{bmatrix}= \begin{bmatrix}x\cos\theta-y\sin\theta\\x\sin\theta+y\cos\theta\\1\end{bmatrix}= R(\theta)\begin{bmatrix}x\\y\\1\end{bmatrix} xy1 = cosθsinθ0sinθcosθ0001 xy1 = xcosθysinθxsinθ+ycosθ1 =R(θ) xy1

(旋转时逆时针 θ \theta θ 为正)

请添加图片描述请添加图片描述请添加图片描述

对称 [ x ′ y ′ 1 ] = [ a b 0 d e 0 0 0 1 ] [ x y 1 ] = [ a x + b y d x + e y 1 ] \begin{bmatrix}x'\\y'\\1\end{bmatrix}= \begin{bmatrix}a&b&0\\d&e&0\\0&0&1\end{bmatrix} \begin{bmatrix}x&y&1\end{bmatrix}= \begin{bmatrix}ax+by\\dx+ey\\1\end{bmatrix} xy1 = ad0be0001 [xy1]= ax+bydx+ey1

  • b = d = 0 b=d=0 b=d=0 a = − 1 a=-1 a=1 e = 1 e=1 e=1 时,关于 y y y 轴对称
  • b = d = 0 b=d=0 b=d=0 a = 1 a=1 a=1 e = − 1 e=-1 e=1 时,关于 x x x 轴对称
  • b = d = 0 b=d=0 b=d=0 a = e = − 1 a=e=-1 a=e=1 时,关于原点对称
  • b = d = 1 b=d=1 b=d=1 a = e = 0 a=e=0 a=e=0 时,关于 y = x y=x y=x 对称
  • b = d = − 1 b=d=-1 b=d=1 a = e = 0 a=e=0 a=e=0 时,关于 y = − x y=-x y=x 对称

错切 [ x ′ y ′ 1 ] = [ 1 b 0 d 1 0 0 0 1 ] [ x y 1 ] = [ x + b y d x + y 1 ] \begin{bmatrix}x'\\y'\\1\end{bmatrix}= \begin{bmatrix}1&b&0\\d&1&0\\0&0&1\end{bmatrix} \begin{bmatrix}x&y&1\end{bmatrix}= \begin{bmatrix}x+by\\dx+y\\1\end{bmatrix} xy1 = 1d0b10001 [xy1]= x+bydx+y1

  • d = 0 d=0 d=0 时,图形 y y y 坐标不变, x x x 坐标随初值和变换系数 b b b 作线性变化(skewX)
  • b = 0 b=0 b=0 时,图形 x x x 坐标不变, y y y 坐标随初值和变换系数 d d d 作线性变化(skewY)
请添加图片描述请添加图片描述请添加图片描述
复合变换

注意矩阵乘法的顺序

复合平移: 就是两次平移加起来
T ( t x 2 , t y 2 ) T ( t x 1 , t y 1 ) = [ 1 0 t x 2 0 1 t y 2 0 0 1 ] [ 1 0 t x 1 0 1 t y 1 0 0 1 ] = [ 1 0 t x 2 + t x 1 0 1 t y 2 + t y 1 0 0 1 ] = T ( t x 2 + t x 1 , t y 2 + t y 1 ) T(t_{x2},t_{y2})T(t_{x1},t_{y1})= \begin{bmatrix}1&0&t_{x2}\\0&1&t_{y2}\\0&0&1\end{bmatrix}\begin{bmatrix}1&0&t_{x1}\\0&1&t_{y1}\\0&0&1\end{bmatrix}= \begin{bmatrix}1&0&t_{x2}+t_{x1}\\0&1&t_{y2}+t_{y1}\\0&0&1\end{bmatrix}= T(t_{x2}+t_{x1},t_{y2}+t_{y1}) T(tx2,ty2)T(tx1,ty1)= 100010tx2ty21 100010tx1ty11 = 100010tx2+tx1ty2+ty11 =T(tx2+tx1,ty2+ty1)
复合缩放:就是两次缩放相乘
S ( s x 2 , s y 2 ) S ( s x 1 , s y 1 ) = [ s x 2 0 0 0 s y 2 0 0 0 1 ] [ s x 1 0 0 0 s y 1 0 0 0 1 ] = [ s x 2 s x 1 0 0 0 s y 2 s y 1 0 0 0 1 ] = S ( s x 2 s x 1 , s y 2 s y 1 ) S(s_{x2},s_{y2})S(s_{x1},s_{y1})= \begin{bmatrix}s_{x2}&0&0\\0&s_{y2}&0\\0&0&1\end{bmatrix} \begin{bmatrix}s_{x1}&0&0\\0&s_{y1}&0\\0&0&1\end{bmatrix}= \begin{bmatrix}s_{x2}s_{x1}&0&0\\0&s_{y2}s_{y1}&0\\0&0&1\end{bmatrix}= S(s_{x2}s_{x1},s_{y2}s_{y1}) S(sx2,sy2)S(sx1,sy1)= sx2000sy20001 sx1000sy10001 = sx2sx1000sy2sy10001 =S(sx2sx1,sy2sy1)
复合旋转: 就是两次的角度相加
R ( θ 1 ) R ( θ 2 ) = [ cos ⁡ θ 1 − sin ⁡ θ 1 0 sin ⁡ θ 1 cos ⁡ θ 1 0 0 0 1 ] [ cos ⁡ θ 2 − sin ⁡ θ 2 0 sin ⁡ θ 2 cos ⁡ θ 2 0 0 0 1 ] = [ cos ⁡ ( θ 1 + θ 2 ) − sin ⁡ ( θ 1 + θ 2 ) 0 sin ⁡ ( θ 1 + θ 2 ) cos ⁡ ( θ 1 + θ 2 ) 0 0 0 1 ] = R ( θ 1 + θ 2 ) R(\theta_1)R(\theta_2)= \begin{bmatrix}\cos\theta_1&-\sin\theta_1&0\\\sin\theta_1&\cos\theta_1&0\\0&0&1\end{bmatrix} \begin{bmatrix}\cos\theta_2&-\sin\theta_2&0\\\sin\theta_2&\cos\theta_2&0\\0&0&1\end{bmatrix}= \begin{bmatrix}\cos(\theta_1+\theta_2)&-\sin(\theta_1+\theta_2)&0\\\sin(\theta_1+\theta_2)&\cos(\theta_1+\theta_2)&0\\0&0&1\end{bmatrix}= R(\theta_1+\theta_2) R(θ1)R(θ2)= cosθ1sinθ10sinθ1cosθ10001 cosθ2sinθ20sinθ2cosθ20001 = cos(θ1+θ2)sin(θ1+θ2)0sin(θ1+θ2)cos(θ1+θ2)0001 =R(θ1+θ2)
参考点变换: 以上缩放和旋转变换操作都是相对于原点的,如果要相对于任意参考点 ( x f , y f ) (x_f,y_f) (xf,yf) ,则可以先平移到原点,再进行缩放、旋转变换,最后平移回去,即:(变换的顺序要从右到左看这个矩阵)
S ( x f , y f ; s x , s y ) = T ( x f , y f ) S ( s x , s y ) T ( − x f , − y f ) = [ s x 0 x f ( 1 − s x ) 0 s y y f ( 1 − s y ) 0 0 1 ] R ( x f , y f ; θ ) = T ( x f , y f ) R ( θ ) T ( − x f , − y f ) = [ cos ⁡ θ − sin ⁡ θ x f ( 1 − cos ⁡ θ ) + y f sin ⁡ θ sin ⁡ θ cos ⁡ θ y f ( 1 − cos ⁡ θ ) + x f s i n θ 0 0 1 ] S(x_f,y_f;s_x,s_y)=T(x_f,y_f)S(s_x,s_y)T(-x_f,-y_f)=\begin{bmatrix}s_x&0&x_f(1-s_x)\\0&s_y&y_f(1-s_y)\\0&0&1\end{bmatrix} \\ R(x_f,y_f;\theta)=T(x_f,y_f)R(\theta)T(-x_f,-y_f)=\begin{bmatrix}\cos\theta&-\sin\theta&x_f(1-\cos\theta)+y_f\sin\theta\\\sin\theta&\cos\theta&y_f(1-\cos\theta)+x_fsin\theta\\0&0&1\end{bmatrix} S(xf,yf;sx,sy)=T(xf,yf)S(sx,sy)T(xf,yf)= sx000sy0xf(1sx)yf(1sy)1 R(xf,yf;θ)=T(xf,yf)R(θ)T(xf,yf)= cosθsinθ0sinθcosθ0xf(1cosθ)+yfsinθyf(1cosθ)+xfsinθ1

三维齐次坐标变换

经常考绕空间中任意轴旋转

三位齐次坐标: 矩阵形式如下,每一个部分都有特殊含义:

  • [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] \begin{bmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{bmatrix} a11a21a31a12a22a32a13a23a33 可以对图形进行 缩放旋转错切 等变换
  • [ a 14 a 24 a 34 ] \begin{bmatrix}a_{14}\\a_{24}\\a_{34}\end{bmatrix} a14a24a34 是对图形进行 平移 变换
  • [ a 41 a 42 a 43 ] \begin{bmatrix}a_{41}&a_{42}&a_{43}\end{bmatrix} [a41a42a43] 是对图形作 投影 变换
  • [ a 44 ] [a_{44}] [a44] 是对图形整体进行 缩放 变换

请添加图片描述

平移 [ x ′ y ′ z ′ 1 ] = [ 1 0 0 t x 0 1 0 t y 0 0 1 t z 0 0 0 1 ] [ x y z 1 ] = [ x + t x y + t y z + t z 1 ] = T ( t x , t y , t z ) [ x y z 1 ] \begin{bmatrix}x'\\y'\\z'\\1\end{bmatrix}= \begin{bmatrix}1&0&0&t_x\\0&1&0&t_y\\0&0&1&t_z\\0&0&0&1\end{bmatrix} \begin{bmatrix}x\\y\\z\\1\end{bmatrix}= \begin{bmatrix}x+t_x\\y+t_y\\z+t_z\\1\end{bmatrix}= T(t_x,t_y,t_z)\begin{bmatrix}x\\y\\z\\1\end{bmatrix} xyz1 = 100001000010txtytz1 xyz1 = x+txy+tyz+tz1 =T(tx,ty,tz) xyz1

缩放: [ x ′ y ′ z ′ 1 ] = [ s x 0 0 0 0 s y 0 0 0 0 s z 0 0 0 0 0 ] [ x y z 1 ] = [ s x x s y y s z z 1 ] = S ( s x , s y , s z ) [ x y z 1 ] \begin{bmatrix}x'\\y'\\z'\\1\end{bmatrix}= \begin{bmatrix}s_x&0&0&0\\0&s_y&0&0\\0&0&s_z&0\\0&0&0&0\end{bmatrix} \begin{bmatrix}x\\y\\z\\1\end{bmatrix}= \begin{bmatrix}s_xx\\s_yy\\s_zz\\1\end{bmatrix}= S(s_x,s_y,s_z)\begin{bmatrix}x\\y\\z\\1\end{bmatrix} xyz1 = sx0000sy0000sz00000 xyz1 = sxxsyyszz1 =S(sx,sy,sz) xyz1

参考点变换:参照 ( x f , y f , z f ) (x_f,y_f,z_f) (xf,yf,zf) 缩放:
S ( x f , y f , z f ; s x , s y , s z ) = T ( x f , y f , z f ) S ( s x , s y , s z ) T ( − x f , − y f , − z f ) = [ s x 0 0 x f ( 1 − s x ) 0 s y 0 y f ( 1 − s y ) 0 0 s z z f ( 1 − s z ) 0 0 0 1 ] S(x_f,y_f,z_f;s_x,s_y,s_z)=T(x_f,y_f,z_f)S(s_x,s_y,s_z)T(-x_f,-y_f,-z_f)=\begin{bmatrix}s_x&0&0&x_f(1-s_x)\\0&s_y&0&y_f(1-s_y)\\0&0&s_z&z_f(1-s_z)\\0&0&0&1\end{bmatrix} S(xf,yf,zf;sx,sy,sz)=T(xf,yf,zf)S(sx,sy,sz)T(xf,yf,zf)= sx0000sy0000sz0xf(1sx)yf(1sy)zf(1sz)1
旋转:绕某一轴旋转 θ \theta θ

  • x x x 轴旋转: [ x ′ y ′ z ′ 1 ] = [ 1 0 0 0 0 cos ⁡ θ − sin ⁡ θ 0 0 sin ⁡ θ cos ⁡ θ 0 0 0 0 1 ] [ x y z 1 ] = R x ( θ ) [ x y z 1 ] \begin{bmatrix}x'\\y'\\z'\\1\end{bmatrix}= \begin{bmatrix}1&0&0&0\\0&\cos\theta&-\sin\theta&0\\0&\sin\theta&\cos\theta&0\\0&0&0&1\end{bmatrix} \begin{bmatrix}x\\y\\z\\1\end{bmatrix}= R_x(\theta)\begin{bmatrix}x\\y\\z\\1\end{bmatrix} xyz1 = 10000cosθsinθ00sinθcosθ00001 xyz1 =Rx(θ) xyz1

  • y y y 轴旋转: [ x ′ y ′ z ′ 1 ] = [ cos ⁡ θ 0 sin ⁡ θ 0 0 1 0 0 − sin ⁡ θ 0 cos ⁡ θ 0 0 0 0 1 ] [ x y z 1 ] = R y ( θ ) [ x y z 1 ] \begin{bmatrix}x'\\y'\\z'\\1\end{bmatrix}= \begin{bmatrix}\cos\theta&0&\sin\theta&0\\0&1&0&0\\-\sin\theta&0&\cos\theta&0\\0&0&0&1\end{bmatrix} \begin{bmatrix}x\\y\\z\\1\end{bmatrix}= R_y(\theta)\begin{bmatrix}x\\y\\z\\1\end{bmatrix} xyz1 = cosθ0sinθ00100sinθ0cosθ00001 xyz1 =Ry(θ) xyz1

  • z z z 轴旋转: [ x ′ y ′ z ′ 1 ] = [ cos ⁡ θ − sin ⁡ θ 0 0 sin ⁡ θ cos ⁡ θ 0 0 0 0 1 0 0 0 0 1 ] [ x y z 1 ] = R x ( θ ) [ x y z 1 ] \begin{bmatrix}x'\\y'\\z'\\1\end{bmatrix}= \begin{bmatrix}\cos\theta&-\sin\theta&0&0\\\sin\theta&\cos\theta&0&0\\0&0&1&0\\0&0&0&1\end{bmatrix} \begin{bmatrix}x\\y\\z\\1\end{bmatrix}= R_x(\theta)\begin{bmatrix}x\\y\\z\\1\end{bmatrix} xyz1 = cosθsinθ00sinθcosθ0000100001 xyz1 =Rx(θ) xyz1

  • 绕任意轴旋转:旋转轴 A B AB AB A ( x a , y a , z a ) A(x_a,y_a,z_a) A(xa,ya,za) 和方向 ( a , b , c ) (a,b,c) (a,b,c) 定义:

    • 先将坐标原先移动到 A A A 点,
    • 使 A B AB AB x x x y y y 轴分别旋转 α \alpha α 角和 β \beta β 角,使得 A B AB AB z z z 轴重合(其中 α \alpha α β \beta β 分别为 A B AB AB 在 YOZ 平面和 XOZ 平面与 Z 轴的夹角)
    • P P P z z z 轴旋转 θ \theta θ
    • 做上述变换的逆变换

R A B = T A R x R y R z R y − 1 R x − 1 T A − 1 R_{AB}=T_AR_xR_yR_zR_y^{-1}R_x^{-1}T_A^{-1} RAB=TARxRyRzRy1Rx1TA1

投影变换

画三视图考过简答题

投影变换的类别

请添加图片描述

正平行投影:投影方向垂直于投影平面的平行投影,即三视图,按照如下顺序,主视图 y = 0 y =0 y=0 ,侧视图 x = 0 x=0 x=0 ,俯视图 z = 0 z=0 z=0

请添加图片描述

给出图片,算斜平面投影公式

斜平行投影:投影方向不垂直于投影平面的平行投影;下图中观察平面为 z = 0 z=0 z=0 ,点 ( x , y ) (x,y) (x,y) 为点 ( x , y , z ) (x,y,z) (x,y,z) 再观察平面上的正平行投影坐标(即 $(x,y,z)\to(x,y)\bot z=0 $),点 ( x ′ , y ′ ) (x',y') (x,y) 为斜投影坐标, ( x , y ) (x,y) (x,y) ( x ′ , y ′ ) (x',y') (x,y) 的距离为 L L L :(这里最好想象成 ( x , y , z ) (x,y,z) (x,y,z) z z z 是正的)

请添加图片描述

x ′ = x + L cos ⁡ α x'=x+L\cos\alpha x=x+Lcosα y ′ = y + L sin ⁡ α y'=y+L\sin\alpha y=y+Lsinα ;而 z = L tan ⁡ β z=L\tan\beta z=Ltanβ ,故 x ′ = x + z tan ⁡ β cos ⁡ α x'=x+\frac{z}{\tan\beta}\cos\alpha x=x+tanβzcosα y ′ = y + z tan ⁡ β sin ⁡ α y'=y+\frac{z}{\tan\beta}\sin\alpha y=y+tanβzsinα ;令 l 1 = 1 tan ⁡ β l_1=\frac{1}{\tan\beta} l1=tanβ1 ,则:
[ x ′ y ′ z ′ 1 ] = [ 1 0 l 1 cos ⁡ α 0 0 1 l 1 sin ⁡ α 0 0 0 0 0 0 0 0 1 ] [ x y z 1 ] \begin{bmatrix}x'\\y'\\z'\\1\end{bmatrix}= \begin{bmatrix} 1 & 0 & l_1\cos\alpha & 0 \\ 0 & 1 & l_1\sin\alpha & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} \begin{bmatrix}x\\y\\z\\1\end{bmatrix} xyz1 = 10000100l1cosαl1sinα000001 xyz1
透视投影:视线(投影线)是从视点(观察点)出发,视线是不平行的。

  • 灭点:不平行于投影平面的视线汇聚的一点称为灭点,在坐标轴上的灭点叫做主灭点。
  • 类别:按照主灭点的个数分为:

请添加图片描述

按照以下图示,根据相似三角形的比例关系可以得到:

请添加图片描述

x ′ = x ( d p z p r p − z ) y ′ = y ( d p z p r p − z ) x'=x(\frac{d_p}{z_{prp}-z})\quad\quad y'=y(\frac{d_p}{z_{prp}-z}) x=x(zprpzdp)y=y(zprpzdp)
用齐次坐标表示为:
[ x h y h z h h ] = [ 1 0 0 0 0 1 0 0 0 0 − z v p / d p z v p ( z p r p / d p ) 0 0 − 1 / d p z p r p / d p ] = [ x y z 1 ] \begin{bmatrix}x_h\\y_h\\z_h\\h\end{bmatrix}= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -z_{vp}/d_p & z_{vp}(z_{prp}/d_p) \\ 0 & 0 & -1/d_p & z_{prp}/d_p \\ \end{bmatrix}= \begin{bmatrix}x\\y\\z\\1\end{bmatrix} xhyhzhh = 1000010000zvp/dp1/dp00zvp(zprp/dp)zprp/dp = xyz1
其中 h = z p r p − z d p h=\frac{z_{prp}-z}{d_p} h=dpzprpz (这里 x h x_h xh 等并不是投影过后的坐标;投影过后的坐标应该是 x ′ = x h h x'=\frac{x_h}{h} x=hxh

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Air浩瀚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值