常微分方程-差分方程

差分与差分方程

差分与差分方程的基本概念

差分:设函数 y ( t ) y(t) y(t) 的定义域为非负整数集 N N N ,用 y t y_{t} yt 代替 y ( t ) y(t) y(t) 记号, y t y_{t} yt t t t 处的差分为:

  • 一阶差分: Δ y t = y t + 1 − y t \Delta y_{t}=y_{{t+1}}-y_{t} Δyt=yt+1yt
  • 二阶差分: Δ 2 y t = Δ ( Δ y t ) = ( y t + 2 − y t + 1 ) − ( y t 1 ) = y t + 2 − 2 y t + 1 + y t \Delta^{2} y_{t}=\Delta(\Delta y_{t})=(y_{t+2}-y_{t+1})-(y_{t_{1}})=y_{t+2}-2y_{t+1}+y_{t} Δ2yt=Δ(Δyt)=(yt+2yt+1)(yt1)=yt+22yt+1+yt
  • n n n 阶差分: Δ n y t = ∑ i = 0 n ( − 1 ) C n i y t + n − i \Delta^{n}y_{t}=\sum\limits_{i=0}^{n}(-1)C_{n}^iy_{t+n-i} Δnyt=i=0n(1)Cniyt+ni

差分的四则运算:和微分的运算类似:

  • Δ ( c y t ) = c Δ y t \Delta(cy_{t})=c\Delta y_{t} Δ(cyt)=cΔyt
  • Δ ( y t ± z t ) = Δ y t ± Δ z t \Delta(y_{t}\pm z_{t})=\Delta y_{t} \pm \Delta z_{t} Δ(yt±zt)=Δyt±Δzt
  • Δ ( y t ⋅ z t ) = z t + 1 Δ y t + y t Δ z t \Delta(y_{t}\cdot z_{t})=z_{{t+1}}\Delta y_{t}+y_{t}\Delta z_{t} Δ(ytzt)=zt+1Δyt+ytΔzt 或者 = y t + 1 Δ z t + z t Δ y t =y_{{t+1}}\Delta z_{t}+z_{t}\Delta y_{t} =yt+1Δzt+ztΔyt
  • Δ ( y t z t ) = z t Δ y t − y t Δ z t z t + 1 z t \Delta(\frac{y_{t}}{z_{t}})=\frac{z_{t}\Delta y_{t}-y_{t}\Delta z_{t}}{z_{t+1}z_{t}} Δ(ztyt)=zt+1ztztΔytytΔzt 或者 = z t + 1 Δ y t − y t + 1 Δ z t z t + 1 z t =\frac{z_{t+1} \Delta y_{t}-y_{t+1} \Delta z_{t}}{z_{t+1}z_{t}} =zt+1ztzt+1Δytyt+1Δzt
  • 常数的差分是 0 0 0
  • Δ n + 1 P n ( x ) = 0 \Delta^{n+1}P_{n}(x)=0 Δn+1Pn(x)=0 ,其中 P n ( x ) P_{n}(x) Pn(x) 为某一 n n n 次多项式

差分方程:设 y t y_{t} yt 为未知函数,则下列两类方程都称为差分方程:

  • H ( t ,   y t ,   Δ y t ,   ⋯   ,   Δ n y t ) = 0 H(t,\,y_{t},\,\Delta y_{t},\,\cdots,\,\Delta^{n}y_{t})=0 H(t,yt,Δyt,,Δnyt)=0
  • F ( t ,   y t ,   y t + 1 ,   ⋯   ,   y t + n ) = 0 F(t,\,y_{t},\,y_{t+1},\,\cdots,\,y_{t+n})=0 F(t,yt,yt+1,,yt+n)=0

一阶常系数线性差分方程

一阶常系数线性差分方程 :同样的,根据自由项是否为 0 ,分为:

  • 齐次 : y t + 1 + p y t = 0 y_{t+1}+py_{t}=0 yt+1+pyt=0
  • 非齐次 : y t + 1 + p y t = f ( t ) y_{t+1}+py_{t}=f(t) yt+1+pyt=f(t)

f ( t ) = 0 f(t)=0 f(t)=0:即一阶常系数齐次线性差分方程,其特征方程为:
λ t + 1 + p λ t = 0 ⇒ λ − p = 0 ⇒ λ = − p \lambda^{t+1}+p\lambda^t=0 \Rightarrow \lambda-p=0 \Rightarrow \lambda=-p λt+1+pλt=0λp=0λ=p
显然这是一个等比数列,可以得到 y t = ( − p ) t y_t=(-p)^t yt=(p)t 是满足条件的,因此通解为:
y t = c ( − p ) t y_t=c(-p)^t yt=c(p)t
f ( t ) = P m ( t ) f(t)=P_m(t) f(t)=Pm(t) :即自由项是一个 m m m 次的多项式,此时要讨论求 y t + 1 + p y t = P m ( t ) y_{t+1}+py_t=P_m(t) yt+1+pyt=Pm(t) 的解。令 y t + 1 = y t + Δ y t y_{t+1}=y_t+\Delta y_t yt+1=yt+Δyt ,则:
Δ y t + ( p + 1 ) y t = P m ( t ) \Delta y_t + (p+1)y_t = P_m(t) Δyt+(p+1)yt=Pm(t)
y t y_t yt 是一个 m m m 次的多项式,则 Δ y t \Delta y_t Δyt 则是一个 m − 1 m-1 m1 次的多项式,参考微分方程的经验,我们可以假设特解形如 y ∗ = t k Q m ( t ) y^*=t^kQ_m(t) y=tkQm(t) ,其中:
k = { 0 当 − p ≠ 1 ,即 1 不是特征根时 1 当 − p = 1 ,即 1 是特征根时 k=\left\{ \begin{array}{ll} 0 & 当 -p\not=1,即 1不是特征根时 \\ 1 & 当 -p=1,即 1是特征根时 \\ \end{array} \right. k={01p=1,即1不是特征根时p=1,即1是特征根时
代入原方程以后,逐一比较 Q m ( t ) Q_m(t) Qm(t) 的系数,就可以得到一个特解。

:求方程 2 y t + 1 + y t = t 2 2y_{t+1}+y_t=t^2 2yt+1+yt=t2 的通解

将方程改写为 y t + 1 + 1 2 y t = 1 2 t 2 y_{t+1}+\frac{1}{2}y_t=\frac{1}{2}t^2 yt+1+21yt=21t2 ,可以得到特征根为 λ = − 1 2 \lambda=-\frac{1}{2} λ=21 ,故对应的齐次方程的通解为:
Y = c ( − 1 2 ) t Y=c(-\frac{1}{2})^t Y=c(21)t
假设其中一个特解形如 y ∗ = A t 2 + B t + C y^*=At^2+Bt+C y=At2+Bt+C ,代入原方程得到:
3 A t 2 + ( 4 A + 3 B ) t + 2 A + 2 B + 3 C = t 2 3At^2+(4A+3B)t+2A+2B+3C=t^2 3At2+(4A+3B)t+2A+2B+3C=t2
解得 A = 1 3 A=\frac{1}{3} A=31 B = − 4 9 B=-\frac{4}{9} B=94 C = 2 27 C=\frac{2}{27} C=272 ,因此特解为 y ∗ = 1 3 t 2 − 4 9 t + 2 27 y^*=\frac{1}{3}t^2-\frac{4}{9}t+\frac{2}{27} y=31t294t+272 ,原方程的通解为:
y t = Y + y ∗ = c ( − 1 2 ) t + 1 3 t 2 − 4 9 t + 2 27 y_t=Y+y^*=c(-\frac{1}{2})^t+\frac{1}{3}t^2-\frac{4}{9}t+\frac{2}{27} yt=Y+y=c(21)t+31t294t+272
f ( t ) = P m ( t ) a t f(t)=P_m(t)a^t f(t)=Pm(t)at ,其中 a ≠ 0 ,   1 a\not=0,\,1 a=0,1 ,此时要讨论求 y t + 1 + p y t = P m ( t ) a t y_{t+1}+py_t=P_m(t)a^t yt+1+pyt=Pm(t)at 的解,可设特解为 y ∗ = t k Q m ( t ) a t y^*=t^kQ_m(t)a^t y=tkQm(t)at ,其中:
k = { 0 当 − p ≠ a ,即 a 不是特征根时 1 当 − p = a ,即 a 是特征根时 k=\left\{ \begin{array}{ll} 0 & 当 -p\not=a,即a不是特征根时 \\ 1 & 当 -p=a,即a是特征根时 \\ \end{array} \right. k={01p=a,即a不是特征根时p=a,即a是特征根时
:求差分方程 y t + 1 + y t = t e t y_{t+1}+y_t=te^t yt+1+yt=tet 的通解

特征方程 λ + 1 = 0 \lambda+1=0 λ+1=0 ,得到特征根 λ = − 1 \lambda=-1 λ=1 ,对应的齐次方程的通解为:
Y = c ( − 1 ) t Y=c(-1)^t Y=c(1)t
假设特解为 y ∗ = ( A t + B ) e t y^*=(At+B)e^t y=(At+B)et ,代入原方程得到:
A ( e + 1 ) t e t + ( A e + B e + B ) e t = t e t A(e+1)te^t+(Ae+Be+B)e^t=te^t A(e+1)tet+(Ae+Be+B)et=tet
解得 A = 1 e + 1 A=\frac{1}{e+1} A=e+11 B = − e ( e + 1 ) 2 B=-\frac{e}{(e+1)^2} B=(e+1)2e ,因此特解为 y ∗ = ( 1 e + 1 t − e ( e + 1 ) 2 ) e t y^*=(\frac{1}{e+1}t-\frac{e}{(e+1)^2})e^t y=(e+11t(e+1)2e)et ,原方程的通解为:
y t = Y + y ∗ = c ( − 1 ) 2 + ( 1 e + 1 t − e ( e + 1 ) 2 ) e t y_t=Y+y^*=c(-1)^2+(\frac{1}{e+1}t-\frac{e}{(e+1)^2})e^t yt=Y+y=c(1)2+(e+11t(e+1)2e)et

二阶常系数线性差分方程

二阶常系数线性差分方程 :同样的,根据自由项是否为 0 ,分为:

  • 齐次: y t + 2 + p y t + 1 + q y t = 0 y_{t+2}+py_{t+1}+qy_t=0 yt+2+pyt+1+qyt=0
  • 非齐次: y t + 2 + p y t + 1 + q y t = f ( t ) y_{t+2}+py_{t+1}+qy_t=f(t) yt+2+pyt+1+qyt=f(t)

f ( t ) = 0 f(t)=0 f(t)=0 ,即二阶常系数齐次线性差分方程,特征方程为:
λ 2 + p λ + q = 0 \lambda^2+p\lambda+q=0 λ2+pλ+q=0
(1) 若存在两个不相等的实根 λ 1 \lambda_1 λ1 λ 2 \lambda_2 λ2 ,那么此时通解为:
y t = c 1 λ 1 t + c 2 λ 2 t y_t=c_1\lambda_1^t+c_2\lambda_2^t yt=c1λ1t+c2λ2t
(2) 若存在两个相同的实根 λ 1 = λ 2 \lambda_1=\lambda_2 λ1=λ2 ,那么此时通解为:
y t = ( c 1 + c 2 t ) λ t y_t=(c_1+c_2t)\lambda^t yt=(c1+c2t)λt
(3) 若存在两个复根 λ = α ± β i \lambda=\alpha\pm\beta i λ=α±βi ,我们转换为三角函数的形式:
α ± β i = r cos ⁡ θ ± i r sin ⁡ θ r = α 2 + β 2 ,    cos ⁡ θ = α r ,    sin ⁡ θ = β r \alpha\pm\beta i=r\cos\theta\pm ir\sin\theta \\ r=\sqrt{\alpha^2+\beta^2},\,\,\cos\theta=\frac{\alpha}{r},\,\,\sin\theta=\frac{\beta}{r} α±βi=rcosθ±irsinθr=α2+β2 ,cosθ=rα,sinθ=rβ
由 de Moivre 公式得,两个特解为:
( α ± β i ) t = ( r cos ⁡ θ ± i r sin ⁡ θ ) t = r t cos ⁡ t θ ± i r t sin ⁡ t θ (\alpha\pm\beta i)^t=(r\cos\theta\pm ir\sin\theta)^t=r^t\cos t\theta\pm ir^t\sin t\theta (α±βi)t=(rcosθ±irsinθ)t=rtcos±irtsin
此时通解为:
y t = ( c 1 cos ⁡ t θ + c 2 sin ⁡ t θ ) r t r = α 2 + β 2 ,    cos ⁡ θ = α r ,    sin ⁡ θ = β r y_t=(c_1\cos t\theta+c_2\sin t\theta)r^t \\ r=\sqrt{\alpha^2+\beta^2},\,\,\cos\theta=\frac{\alpha}{r},\,\,\sin\theta=\frac{\beta}{r} yt=(c1cos+c2sin)rtr=α2+β2 ,cosθ=rα,sinθ=rβ
总结
特征方程   λ 2 + p λ + q = 0   的根 差分方程   y t + 2 + p y t + 1 + q y t = 0   的通解 不相等的实根   λ 1 ≠ λ 2 y t = c 1 λ 1 t + c 2 λ 2 t 相等的实根   λ 1 = λ 2 y t = ( c 1 + c 2 t ) λ t 一对共轭复根 λ 1 ,   2 = α ± i β ,   β > 0 y t = ( c 1 cos ⁡ t θ + c 2 sin ⁡ t θ ) r t r = α 2 + β 2 ,    cos ⁡ θ = α r ,    sin ⁡ θ = β r \begin{array}{l|l} \hline 特征方程\,\lambda^2+p\lambda+q=0\,的根 & 差分方程\, y_{t+2}+py_{t+1}+qy_t=0\, 的通解 \\ \hline 不相等的实根\,\lambda_1\not=\lambda_2 & y_t=c_1\lambda_1^t+c_2\lambda_2^t \\ 相等的实根\,\lambda_1=\lambda_2 & y_t=(c_1+c_2t)\lambda^t \\ 一对共轭复根 \lambda_{1,\,2}=\alpha\pm i\beta,\,\beta\gt 0 & \begin{array}{l} y_t=(c_1\cos t\theta+c_2\sin t\theta)r^t \\ r=\sqrt{\alpha^2+\beta^2},\,\,\cos\theta=\frac{\alpha}{r},\,\,\sin\theta=\frac{\beta}{r} \end{array} \\ \hline \end{array} 特征方程λ2+pλ+q=0的根不相等的实根λ1=λ2相等的实根λ1=λ2一对共轭复根λ1,2=α±iβ,β>0差分方程yt+2+pyt+1+qyt=0的通解yt=c1λ1t+c2λ2tyt=(c1+c2t)λtyt=(c1cos+c2sin)rtr=α2+β2 ,cosθ=rα,sinθ=rβ
:求 y t + 2 + y t + 1 + y t = 0 y_{t+2}+y_{t+1}+y_t=0 yt+2+yt+1+yt=0 的通解

特征方程 λ 2 + λ + 1 = 0 \lambda^2+\lambda+1=0 λ2+λ+1=0 ,解得特征根 λ = − 1 2 ± 3 2 i \lambda=-\frac{1}{2}\pm\frac{\sqrt{3}}{2}i λ=21±23 i ;此时可知 r = 1 r=1 r=1 θ = 2 3 π \theta=\frac{2}{3}\pi θ=32π ,故通解为:
y t = c 1 cos ⁡ 2 3 π t + c 2 sin ⁡ 2 3 π t y_t=c_1\cos\frac{2}{3}\pi t+c_2\sin\frac{2}{3}\pi t yt=c1cos32πt+c2sin32πt
f ( t ) = P m ( t ) f(t)=P_m(t) f(t)=Pm(t) :即自由项是一个 m m m 次的多项式,此时可设特解为 y ∗ = t k Q m ( t ) y^*=t^kQ_m(t) y=tkQm(t) ,其中:
k = { 0 当   1 + p + q ≠ 0 ,   即   1   不是特征根时 1 当   1 + p + q = 0   而   2 + p ≠ 0 ,   即   1   是单重特征根时 2 当   1 + p + q = 0   且   2 + p = 0 ,   即   1   是双重特征根时 k=\left\{ \begin{array}{ll} 0 & 当\,1+p+q\not=0,\,即\,1\,不是特征根时 \\ 1 & 当\,1+p+q=0\,而\,2+p\not=0,\,即\,1\,是单重特征根时 \\ 2 & 当\,1+p+q=0\,且\,2+p=0,\,即\,1\,是双重特征根时 \\ \end{array} \right. k= 0121+p+q=0,1不是特征根时1+p+q=02+p=0,1是单重特征根时1+p+q=02+p=0,1是双重特征根时
:求 y t + 2 + 2 y t + 1 − 3 y t = t y_{t+2}+2y_{t+1}-3y_{t}=t yt+2+2yt+13yt=t 的通解

特征方程 λ 2 + 2 λ − 3 = 0 \lambda^2+2\lambda-3=0 λ2+2λ3=0 ,解得 λ 1 = 1 \lambda_1=1 λ1=1 λ 2 = − 3 \lambda_2=-3 λ2=3 ,因此对应的齐次方程的通解为:
Y = c 1 + c 2 ( − 3 ) t Y=c_1+c_2(-3)^t Y=c1+c2(3)t
设特解为 y ∗ = t ( A t + B ) y^*=t(At+B) y=t(At+B) ,代入得到:
8 A t + 6 A + 4 B = t ⇒ A = 1 8 ,   B = − 3 16 8At+6A+4B=t\Rightarrow A=\frac{1}{8},\,B=-\frac{3}{16} 8At+6A+4B=tA=81,B=163
因此特解为 y ∗ = t ( 1 8 t − 3 16 ) y^*=t(\frac{1}{8}t-\frac{3}{16}) y=t(81t163) ,原方程的通解为:
y t = Y + y ∗ = c 1 + c 2 ( − 3 ) t + t ( 1 8 t − 3 16 ) y_t=Y+y^*=c_1+c_2(-3)^t+t(\frac{1}{8}t-\frac{3}{16}) yt=Y+y=c1+c2(3)t+t(81t163)
f ( t ) = P m ( t ) a t f(t)=P_m(t)a^t f(t)=Pm(t)at ,其中 a ≠ 0 ,   1 a\not=0,\,1 a=0,1 ,可设特解为 y ∗ = t k Q m ( t ) a t y^*=t^kQ_m(t)a^t y=tkQm(t)at ,其中:
k = { 0 当   a 2 + p a + q ≠ 0 ,   即   a   不是特征根时 1 当   a 2 + p a + q = 0   而   2 a + p ≠ 0 ,   即   a   是单重特征根时 2 当   a 2 + p a + q = 0   且   2 a + p = 0 ,   即   a   是双重特征根时 k=\left\{ \begin{array}{ll} 0 & 当\,a^2+pa+q\not=0,\,即\,a\,不是特征根时 \\ 1 & 当\,a^2+pa+q=0\,而\,2a+p\not=0,\,即\,a\,是单重特征根时 \\ 2 & 当\,a^2+pa+q=0\,且\,2a+p=0,\,即\,a\,是双重特征根时 \\ \end{array} \right. k= 012a2+pa+q=0,a不是特征根时a2+pa+q=02a+p=0,a是单重特征根时a2+pa+q=02a+p=0,a是双重特征根时
:求 y t + 2 − 3 y t + 1 + 2 y t = 2 + t 3 t y_{t+2}-3y_{t+1}+2y_{t}=2+t3^t yt+23yt+1+2yt=2+t3t 的特解

要把这个方程看成三部分,分别对应上边的 ①、② 和 ③:
{ y t + 2 − 3 y t + 1 + 2 y t = 0 → Y y t + 2 − 3 y t + 1 + 2 y t = 2 → y ∗ ( 1 ) y t + 2 − 3 y t + 1 + 2 y t = t 3 t → y ∗ ( 2 ) \left\{\begin{array}{l} y_{t+2}-3y_{t+1}+2y_{t}=0 \to Y \\ y_{t+2}-3y_{t+1}+2y_{t}=2 \to y^{*(1)} \\ y_{t+2}-3y_{t+1}+2y_{t}=t3^t \to y^{*(2)} \\ \end{array}\right. yt+23yt+1+2yt=0Yyt+23yt+1+2yt=2y(1)yt+23yt+1+2yt=t3ty(2)
方程一:特征方程为 λ 2 − 3 λ + 2 = 0 \lambda^2-3\lambda+2=0 λ23λ+2=0 ,解得 λ 1 = 1 \lambda_1=1 λ1=1 λ 2 = 2 \lambda_2=2 λ2=2 ,因此对应的齐次方程的通解为:
Y = c 1 + c 2 2 t Y=c_1+c_22^t Y=c1+c22t
方程二:设特解 y ∗ ( 1 ) = A t y^{*(1)}=At y(1)=At ,代入得到:
− A = 2 ⇒ A = − 2 ⇒ y ∗ ( 1 ) = − 2 t -A=2\Rightarrow A=-2 \Rightarrow y^{*(1)}=-2t A=2A=2y(1)=2t
方程三:设特解 y ∗ ( 2 ) = ( B t + C ) 3 t y^{*(2)}=(Bt+C)3^t y(2)=(Bt+C)3t ,代入得到:
( 2 B t + 9 B + 2 C ) 3 t = t 3 t ⇒ B = 1 2 ,   C = − 9 4 ⇒ y ∗ ( 2 ) = ( 1 2 t − 9 4 ) 3 t (2Bt+9B+2C)3^t=t3^t \Rightarrow B=\frac{1}{2},\,C=-\frac{9}{4} \Rightarrow y^{*(2)}=(\frac{1}{2}t-\frac{9}{4})3^t (2Bt+9B+2C)3t=t3tB=21,C=49y(2)=(21t49)3t
因此,原方程的通解为:
y t = Y + y ∗ ( 1 ) + y ∗ ( 2 ) = c 1 + c 2 2 t − 2 t + ( 1 2 t − 9 4 ) 3 t y_t=Y+y^{*(1)}+y^{*(2)}=c_1+c_22^t-2t+(\frac{1}{2}t-\frac{9}{4})3^t yt=Y+y(1)+y(2)=c1+c22t2t+(21t49)3t

  • 3
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Air浩瀚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值