差分与差分方程
差分与差分方程的基本概念
差分:设函数 y ( t ) y(t) y(t) 的定义域为非负整数集 N N N ,用 y t y_{t} yt 代替 y ( t ) y(t) y(t) 记号, y t y_{t} yt 在 t t t 处的差分为:
- 一阶差分: Δ y t = y t + 1 − y t \Delta y_{t}=y_{{t+1}}-y_{t} Δyt=yt+1−yt
- 二阶差分: Δ 2 y t = Δ ( Δ y t ) = ( y t + 2 − y t + 1 ) − ( y t + 1 − y t ) = y t + 2 − 2 y t + 1 + y t \Delta^{2} y_{t}=\Delta(\Delta y_{t})=(y_{t+2}-y_{t+1})-(y_{t+1}-y_{t})=y_{t+2}-2y_{t+1}+y_{t} Δ2yt=Δ(Δyt)=(yt+2−yt+1)−(yt+1−yt)=yt+2−2yt+1+yt
- n n n 阶差分: Δ n y t = ∑ i = 0 n ( − 1 ) C n i y t + n − i \Delta^{n}y_{t}=\sum\limits_{i=0}^{n}(-1)C_{n}^iy_{t+n-i} Δnyt=i=0∑n(−1)Cniyt+n−i
差分的四则运算:和微分的运算类似:
- Δ ( c y t ) = c Δ y t \Delta(cy_{t})=c\Delta y_{t} Δ(cyt)=cΔyt
- Δ ( y t ± z t ) = Δ y t ± Δ z t \Delta(y_{t}\pm z_{t})=\Delta y_{t} \pm \Delta z_{t} Δ(yt±zt)=Δyt±Δzt
- Δ ( y t ⋅ z t ) = z t + 1 Δ y t + y t Δ z t \Delta(y_{t}\cdot z_{t})=z_{{t+1}}\Delta y_{t}+y_{t}\Delta z_{t} Δ(yt⋅zt)=zt+1Δyt+ytΔzt 或者 = y t + 1 Δ z t + z t Δ y t =y_{{t+1}}\Delta z_{t}+z_{t}\Delta y_{t} =yt+1Δzt+ztΔyt
- Δ ( y t z t ) = z t Δ y t − y t Δ z t z t + 1 z t \Delta(\frac{y_{t}}{z_{t}})=\frac{z_{t}\Delta y_{t}-y_{t}\Delta z_{t}}{z_{t+1}z_{t}} Δ(ztyt)=zt+1ztztΔyt−ytΔzt 或者 = z t + 1 Δ y t − y t + 1 Δ z t z t + 1 z t =\frac{z_{t+1} \Delta y_{t}-y_{t+1} \Delta z_{t}}{z_{t+1}z_{t}} =zt+1ztzt+1Δyt−yt+1Δzt
- 常数的差分是 0 0 0
- Δ n + 1 P n ( x ) = 0 \Delta^{n+1}P_{n}(x)=0 Δn+1Pn(x)=0 ,其中 P n ( x ) P_{n}(x) Pn(x) 为某一 n n n 次多项式
差分方程:设 y t y_{t} yt 为未知函数,则下列两类方程都称为差分方程:
- H ( t , y t , Δ y t , ⋯ , Δ n y t ) = 0 H(t,\,y_{t},\,\Delta y_{t},\,\cdots,\,\Delta^{n}y_{t})=0 H(t,yt,Δyt,⋯,Δnyt)=0
- F ( t , y t , y t + 1 , ⋯ , y t + n ) = 0 F(t,\,y_{t},\,y_{t+1},\,\cdots,\,y_{t+n})=0 F(t,yt,yt+1,⋯,yt+n)=0
一阶常系数线性差分方程
一阶常系数线性差分方程 :同样的,根据自由项是否为 0 ,分为:
- 齐次 : y t + 1 + p y t = 0 y_{t+1}+py_{t}=0 yt+1+pyt=0
- 非齐次 : y t + 1 + p y t = f ( t ) y_{t+1}+py_{t}=f(t) yt+1+pyt=f(t)
①
f
(
t
)
=
0
f(t)=0
f(t)=0:即一阶常系数齐次线性差分方程,其特征方程为:
λ
t
+
1
+
p
λ
t
=
0
⇒
λ
−
p
=
0
⇒
λ
=
−
p
\lambda^{t+1}+p\lambda^t=0 \Rightarrow \lambda-p=0 \Rightarrow \lambda=-p
λt+1+pλt=0⇒λ−p=0⇒λ=−p
显然这是一个等比数列,可以得到
y
t
=
(
−
p
)
t
y_t=(-p)^t
yt=(−p)t 是满足条件的,因此通解为:
y
t
=
c
(
−
p
)
t
y_t=c(-p)^t
yt=c(−p)t
②
f
(
t
)
=
P
m
(
t
)
f(t)=P_m(t)
f(t)=Pm(t) :即自由项是一个
m
m
m 次的多项式,此时要讨论求
y
t
+
1
+
p
y
t
=
P
m
(
t
)
y_{t+1}+py_t=P_m(t)
yt+1+pyt=Pm(t) 的解。令
y
t
+
1
=
y
t
+
Δ
y
t
y_{t+1}=y_t+\Delta y_t
yt+1=yt+Δyt ,则:
Δ
y
t
+
(
p
+
1
)
y
t
=
P
m
(
t
)
\Delta y_t + (p+1)y_t = P_m(t)
Δyt+(p+1)yt=Pm(t)
若
y
t
y_t
yt 是一个
m
m
m 次的多项式,则
Δ
y
t
\Delta y_t
Δyt 则是一个
m
−
1
m-1
m−1 次的多项式,参考微分方程的经验,我们可以假设特解形如
y
∗
=
t
k
Q
m
(
t
)
y^*=t^kQ_m(t)
y∗=tkQm(t) ,其中:
k
=
{
0
当
−
p
≠
1
,即
1
不是特征根时
1
当
−
p
=
1
,即
1
是特征根时
k=\left\{ \begin{array}{ll} 0 & 当 -p\not=1,即 1不是特征根时 \\ 1 & 当 -p=1,即 1是特征根时 \\ \end{array} \right.
k={01当−p=1,即1不是特征根时当−p=1,即1是特征根时
代入原方程以后,逐一比较
Q
m
(
t
)
Q_m(t)
Qm(t) 的系数,就可以得到一个特解。
例:求方程 2 y t + 1 + y t = t 2 2y_{t+1}+y_t=t^2 2yt+1+yt=t2 的通解
将方程改写为
y
t
+
1
+
1
2
y
t
=
1
2
t
2
y_{t+1}+\frac{1}{2}y_t=\frac{1}{2}t^2
yt+1+21yt=21t2 ,可以得到特征根为
λ
=
−
1
2
\lambda=-\frac{1}{2}
λ=−21 ,故对应的齐次方程的通解为:
Y
=
c
(
−
1
2
)
t
Y=c(-\frac{1}{2})^t
Y=c(−21)t
假设其中一个特解形如
y
∗
=
A
t
2
+
B
t
+
C
y^*=At^2+Bt+C
y∗=At2+Bt+C ,代入原方程得到:
3
A
t
2
+
(
4
A
+
3
B
)
t
+
2
A
+
2
B
+
3
C
=
t
2
3At^2+(4A+3B)t+2A+2B+3C=t^2
3At2+(4A+3B)t+2A+2B+3C=t2
解得
A
=
1
3
A=\frac{1}{3}
A=31 ,
B
=
−
4
9
B=-\frac{4}{9}
B=−94 ,
C
=
2
27
C=\frac{2}{27}
C=272 ,因此特解为
y
∗
=
1
3
t
2
−
4
9
t
+
2
27
y^*=\frac{1}{3}t^2-\frac{4}{9}t+\frac{2}{27}
y∗=31t2−94t+272 ,原方程的通解为:
y
t
=
Y
+
y
∗
=
c
(
−
1
2
)
t
+
1
3
t
2
−
4
9
t
+
2
27
y_t=Y+y^*=c(-\frac{1}{2})^t+\frac{1}{3}t^2-\frac{4}{9}t+\frac{2}{27}
yt=Y+y∗=c(−21)t+31t2−94t+272
③
f
(
t
)
=
P
m
(
t
)
a
t
f(t)=P_m(t)a^t
f(t)=Pm(t)at ,其中
a
≠
0
,
1
a\not=0,\,1
a=0,1 ,此时要讨论求
y
t
+
1
+
p
y
t
=
P
m
(
t
)
a
t
y_{t+1}+py_t=P_m(t)a^t
yt+1+pyt=Pm(t)at 的解,可设特解为
y
∗
=
t
k
Q
m
(
t
)
a
t
y^*=t^kQ_m(t)a^t
y∗=tkQm(t)at ,其中:
k
=
{
0
当
−
p
≠
a
,即
a
不是特征根时
1
当
−
p
=
a
,即
a
是特征根时
k=\left\{ \begin{array}{ll} 0 & 当 -p\not=a,即a不是特征根时 \\ 1 & 当 -p=a,即a是特征根时 \\ \end{array} \right.
k={01当−p=a,即a不是特征根时当−p=a,即a是特征根时
例:求差分方程
y
t
+
1
+
y
t
=
t
e
t
y_{t+1}+y_t=te^t
yt+1+yt=tet 的通解
特征方程
λ
+
1
=
0
\lambda+1=0
λ+1=0 ,得到特征根
λ
=
−
1
\lambda=-1
λ=−1 ,对应的齐次方程的通解为:
Y
=
c
(
−
1
)
t
Y=c(-1)^t
Y=c(−1)t
假设特解为
y
∗
=
(
A
t
+
B
)
e
t
y^*=(At+B)e^t
y∗=(At+B)et ,代入原方程得到:
A
(
e
+
1
)
t
e
t
+
(
A
e
+
B
e
+
B
)
e
t
=
t
e
t
A(e+1)te^t+(Ae+Be+B)e^t=te^t
A(e+1)tet+(Ae+Be+B)et=tet
解得
A
=
1
e
+
1
A=\frac{1}{e+1}
A=e+11 ,
B
=
−
e
(
e
+
1
)
2
B=-\frac{e}{(e+1)^2}
B=−(e+1)2e ,因此特解为
y
∗
=
(
1
e
+
1
t
−
e
(
e
+
1
)
2
)
e
t
y^*=(\frac{1}{e+1}t-\frac{e}{(e+1)^2})e^t
y∗=(e+11t−(e+1)2e)et ,原方程的通解为:
y
t
=
Y
+
y
∗
=
c
(
−
1
)
2
+
(
1
e
+
1
t
−
e
(
e
+
1
)
2
)
e
t
y_t=Y+y^*=c(-1)^2+(\frac{1}{e+1}t-\frac{e}{(e+1)^2})e^t
yt=Y+y∗=c(−1)2+(e+11t−(e+1)2e)et
二阶常系数线性差分方程
二阶常系数线性差分方程 :同样的,根据自由项是否为 0 ,分为:
- 齐次: y t + 2 + p y t + 1 + q y t = 0 y_{t+2}+py_{t+1}+qy_t=0 yt+2+pyt+1+qyt=0
- 非齐次: y t + 2 + p y t + 1 + q y t = f ( t ) y_{t+2}+py_{t+1}+qy_t=f(t) yt+2+pyt+1+qyt=f(t)
①
f
(
t
)
=
0
f(t)=0
f(t)=0 ,即二阶常系数齐次线性差分方程,特征方程为:
λ
2
+
p
λ
+
q
=
0
\lambda^2+p\lambda+q=0
λ2+pλ+q=0
(1) 若存在两个不相等的实根
λ
1
\lambda_1
λ1 和
λ
2
\lambda_2
λ2 ,那么此时通解为:
y
t
=
c
1
λ
1
t
+
c
2
λ
2
t
y_t=c_1\lambda_1^t+c_2\lambda_2^t
yt=c1λ1t+c2λ2t
(2) 若存在两个相同的实根
λ
1
=
λ
2
\lambda_1=\lambda_2
λ1=λ2 ,那么此时通解为:
y
t
=
(
c
1
+
c
2
t
)
λ
t
y_t=(c_1+c_2t)\lambda^t
yt=(c1+c2t)λt
(3) 若存在两个复根
λ
=
α
±
β
i
\lambda=\alpha\pm\beta i
λ=α±βi ,我们转换为三角函数的形式:
α
±
β
i
=
r
cos
θ
±
i
r
sin
θ
r
=
α
2
+
β
2
,
cos
θ
=
α
r
,
sin
θ
=
β
r
\alpha\pm\beta i=r\cos\theta\pm ir\sin\theta \\ r=\sqrt{\alpha^2+\beta^2},\,\,\cos\theta=\frac{\alpha}{r},\,\,\sin\theta=\frac{\beta}{r}
α±βi=rcosθ±irsinθr=α2+β2,cosθ=rα,sinθ=rβ
由 de Moivre 公式得,两个特解为:
(
α
±
β
i
)
t
=
(
r
cos
θ
±
i
r
sin
θ
)
t
=
r
t
cos
t
θ
±
i
r
t
sin
t
θ
(\alpha\pm\beta i)^t=(r\cos\theta\pm ir\sin\theta)^t=r^t\cos t\theta\pm ir^t\sin t\theta
(α±βi)t=(rcosθ±irsinθ)t=rtcostθ±irtsintθ
此时通解为:
y
t
=
(
c
1
cos
t
θ
+
c
2
sin
t
θ
)
r
t
r
=
α
2
+
β
2
,
cos
θ
=
α
r
,
sin
θ
=
β
r
y_t=(c_1\cos t\theta+c_2\sin t\theta)r^t \\ r=\sqrt{\alpha^2+\beta^2},\,\,\cos\theta=\frac{\alpha}{r},\,\,\sin\theta=\frac{\beta}{r}
yt=(c1costθ+c2sintθ)rtr=α2+β2,cosθ=rα,sinθ=rβ
总结:
特征方程
λ
2
+
p
λ
+
q
=
0
的根
差分方程
y
t
+
2
+
p
y
t
+
1
+
q
y
t
=
0
的通解
不相等的实根
λ
1
≠
λ
2
y
t
=
c
1
λ
1
t
+
c
2
λ
2
t
相等的实根
λ
1
=
λ
2
y
t
=
(
c
1
+
c
2
t
)
λ
t
一对共轭复根
λ
1
,
2
=
α
±
i
β
,
β
>
0
y
t
=
(
c
1
cos
t
θ
+
c
2
sin
t
θ
)
r
t
r
=
α
2
+
β
2
,
cos
θ
=
α
r
,
sin
θ
=
β
r
\begin{array}{l|l} \hline 特征方程\,\lambda^2+p\lambda+q=0\,的根 & 差分方程\, y_{t+2}+py_{t+1}+qy_t=0\, 的通解 \\ \hline 不相等的实根\,\lambda_1\not=\lambda_2 & y_t=c_1\lambda_1^t+c_2\lambda_2^t \\ 相等的实根\,\lambda_1=\lambda_2 & y_t=(c_1+c_2t)\lambda^t \\ 一对共轭复根 \lambda_{1,\,2}=\alpha\pm i\beta,\,\beta\gt 0 & \begin{array}{l} y_t=(c_1\cos t\theta+c_2\sin t\theta)r^t \\ r=\sqrt{\alpha^2+\beta^2},\,\,\cos\theta=\frac{\alpha}{r},\,\,\sin\theta=\frac{\beta}{r} \end{array} \\ \hline \end{array}
特征方程λ2+pλ+q=0的根不相等的实根λ1=λ2相等的实根λ1=λ2一对共轭复根λ1,2=α±iβ,β>0差分方程yt+2+pyt+1+qyt=0的通解yt=c1λ1t+c2λ2tyt=(c1+c2t)λtyt=(c1costθ+c2sintθ)rtr=α2+β2,cosθ=rα,sinθ=rβ
例:求
y
t
+
2
+
y
t
+
1
+
y
t
=
0
y_{t+2}+y_{t+1}+y_t=0
yt+2+yt+1+yt=0 的通解
特征方程
λ
2
+
λ
+
1
=
0
\lambda^2+\lambda+1=0
λ2+λ+1=0 ,解得特征根
λ
=
−
1
2
±
3
2
i
\lambda=-\frac{1}{2}\pm\frac{\sqrt{3}}{2}i
λ=−21±23i ;此时可知
r
=
1
r=1
r=1 ,
θ
=
2
3
π
\theta=\frac{2}{3}\pi
θ=32π ,故通解为:
y
t
=
c
1
cos
2
3
π
t
+
c
2
sin
2
3
π
t
y_t=c_1\cos\frac{2}{3}\pi t+c_2\sin\frac{2}{3}\pi t
yt=c1cos32πt+c2sin32πt
②
f
(
t
)
=
P
m
(
t
)
f(t)=P_m(t)
f(t)=Pm(t) :即自由项是一个
m
m
m 次的多项式,此时可设特解为
y
∗
=
t
k
Q
m
(
t
)
y^*=t^kQ_m(t)
y∗=tkQm(t) ,其中:
k
=
{
0
当
1
+
p
+
q
≠
0
,
即
1
不是特征根时
1
当
1
+
p
+
q
=
0
而
2
+
p
≠
0
,
即
1
是单重特征根时
2
当
1
+
p
+
q
=
0
且
2
+
p
=
0
,
即
1
是双重特征根时
k=\left\{ \begin{array}{ll} 0 & 当\,1+p+q\not=0,\,即\,1\,不是特征根时 \\ 1 & 当\,1+p+q=0\,而\,2+p\not=0,\,即\,1\,是单重特征根时 \\ 2 & 当\,1+p+q=0\,且\,2+p=0,\,即\,1\,是双重特征根时 \\ \end{array} \right.
k=⎩
⎨
⎧012当1+p+q=0,即1不是特征根时当1+p+q=0而2+p=0,即1是单重特征根时当1+p+q=0且2+p=0,即1是双重特征根时
例:求
y
t
+
2
+
2
y
t
+
1
−
3
y
t
=
t
y_{t+2}+2y_{t+1}-3y_{t}=t
yt+2+2yt+1−3yt=t 的通解
特征方程
λ
2
+
2
λ
−
3
=
0
\lambda^2+2\lambda-3=0
λ2+2λ−3=0 ,解得
λ
1
=
1
\lambda_1=1
λ1=1 ,
λ
2
=
−
3
\lambda_2=-3
λ2=−3 ,因此对应的齐次方程的通解为:
Y
=
c
1
+
c
2
(
−
3
)
t
Y=c_1+c_2(-3)^t
Y=c1+c2(−3)t
设特解为
y
∗
=
t
(
A
t
+
B
)
y^*=t(At+B)
y∗=t(At+B) ,代入得到:
8
A
t
+
6
A
+
4
B
=
t
⇒
A
=
1
8
,
B
=
−
3
16
8At+6A+4B=t\Rightarrow A=\frac{1}{8},\,B=-\frac{3}{16}
8At+6A+4B=t⇒A=81,B=−163
因此特解为
y
∗
=
t
(
1
8
t
−
3
16
)
y^*=t(\frac{1}{8}t-\frac{3}{16})
y∗=t(81t−163) ,原方程的通解为:
y
t
=
Y
+
y
∗
=
c
1
+
c
2
(
−
3
)
t
+
t
(
1
8
t
−
3
16
)
y_t=Y+y^*=c_1+c_2(-3)^t+t(\frac{1}{8}t-\frac{3}{16})
yt=Y+y∗=c1+c2(−3)t+t(81t−163)
③
f
(
t
)
=
P
m
(
t
)
a
t
f(t)=P_m(t)a^t
f(t)=Pm(t)at ,其中
a
≠
0
,
1
a\not=0,\,1
a=0,1 ,可设特解为
y
∗
=
t
k
Q
m
(
t
)
a
t
y^*=t^kQ_m(t)a^t
y∗=tkQm(t)at ,其中:
k
=
{
0
当
a
2
+
p
a
+
q
≠
0
,
即
a
不是特征根时
1
当
a
2
+
p
a
+
q
=
0
而
2
a
+
p
≠
0
,
即
a
是单重特征根时
2
当
a
2
+
p
a
+
q
=
0
且
2
a
+
p
=
0
,
即
a
是双重特征根时
k=\left\{ \begin{array}{ll} 0 & 当\,a^2+pa+q\not=0,\,即\,a\,不是特征根时 \\ 1 & 当\,a^2+pa+q=0\,而\,2a+p\not=0,\,即\,a\,是单重特征根时 \\ 2 & 当\,a^2+pa+q=0\,且\,2a+p=0,\,即\,a\,是双重特征根时 \\ \end{array} \right.
k=⎩
⎨
⎧012当a2+pa+q=0,即a不是特征根时当a2+pa+q=0而2a+p=0,即a是单重特征根时当a2+pa+q=0且2a+p=0,即a是双重特征根时
例:求
y
t
+
2
−
3
y
t
+
1
+
2
y
t
=
2
+
t
3
t
y_{t+2}-3y_{t+1}+2y_{t}=2+t3^t
yt+2−3yt+1+2yt=2+t3t 的特解
要把这个方程看成三部分,分别对应上边的 ①、② 和 ③:
{
y
t
+
2
−
3
y
t
+
1
+
2
y
t
=
0
→
Y
y
t
+
2
−
3
y
t
+
1
+
2
y
t
=
2
→
y
∗
(
1
)
y
t
+
2
−
3
y
t
+
1
+
2
y
t
=
t
3
t
→
y
∗
(
2
)
\left\{\begin{array}{l} y_{t+2}-3y_{t+1}+2y_{t}=0 \to Y \\ y_{t+2}-3y_{t+1}+2y_{t}=2 \to y^{*(1)} \\ y_{t+2}-3y_{t+1}+2y_{t}=t3^t \to y^{*(2)} \\ \end{array}\right.
⎩
⎨
⎧yt+2−3yt+1+2yt=0→Yyt+2−3yt+1+2yt=2→y∗(1)yt+2−3yt+1+2yt=t3t→y∗(2)
方程一:特征方程为
λ
2
−
3
λ
+
2
=
0
\lambda^2-3\lambda+2=0
λ2−3λ+2=0 ,解得
λ
1
=
1
\lambda_1=1
λ1=1 ,
λ
2
=
2
\lambda_2=2
λ2=2 ,因此对应的齐次方程的通解为:
Y
=
c
1
+
c
2
2
t
Y=c_1+c_22^t
Y=c1+c22t
方程二:设特解
y
∗
(
1
)
=
A
t
y^{*(1)}=At
y∗(1)=At ,代入得到:
−
A
=
2
⇒
A
=
−
2
⇒
y
∗
(
1
)
=
−
2
t
-A=2\Rightarrow A=-2 \Rightarrow y^{*(1)}=-2t
−A=2⇒A=−2⇒y∗(1)=−2t
方程三:设特解
y
∗
(
2
)
=
(
B
t
+
C
)
3
t
y^{*(2)}=(Bt+C)3^t
y∗(2)=(Bt+C)3t ,代入得到:
(
2
B
t
+
9
B
+
2
C
)
3
t
=
t
3
t
⇒
B
=
1
2
,
C
=
−
9
4
⇒
y
∗
(
2
)
=
(
1
2
t
−
9
4
)
3
t
(2Bt+9B+2C)3^t=t3^t \Rightarrow B=\frac{1}{2},\,C=-\frac{9}{4} \Rightarrow y^{*(2)}=(\frac{1}{2}t-\frac{9}{4})3^t
(2Bt+9B+2C)3t=t3t⇒B=21,C=−49⇒y∗(2)=(21t−49)3t
因此,原方程的通解为:
y
t
=
Y
+
y
∗
(
1
)
+
y
∗
(
2
)
=
c
1
+
c
2
2
t
−
2
t
+
(
1
2
t
−
9
4
)
3
t
y_t=Y+y^{*(1)}+y^{*(2)}=c_1+c_22^t-2t+(\frac{1}{2}t-\frac{9}{4})3^t
yt=Y+y∗(1)+y∗(2)=c1+c22t−2t+(21t−49)3t