题目自己去找吧~~~
这道题我一开始想的二分图,将每个节点拆点,x点集表示每一个节点的流出的点,y点集表示每一个节点流入的节点。对于题目中的好点对,我们将中心节点以及与中心节点相连的边删除之后,剩下的每个节点的入度和出度都为1,直接计算二分图最大匹配即可。容易得出答案为加上的边和删去的边之和。加上的边为2 * N - 1 - 与中心节点相连的边 + 点数 - 二分图最大匹配。然后我莫名其妙的在计算加上了多少条边上卡了一会。删去的边数为总边数 - 与中心点相连的边中使用的边数 - 匹配数。最后将这个化简一下就行了。
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int maxn = 1000 + 10;
int N, M;
bool vis[maxn];
int HEAD[maxn], head[maxn], belong[maxn];
struct edge{
int u, v, next;
}E[1000 + 10];
struct node{
int v, next;
}e[1000 + 10];
inline int read(){
int x = 0, f = 1; char ch = getchar();
while(ch < '0' || ch > '9'){if(ch == '-')f = -1; ch = getchar();}
while(ch >= '0' && ch <= '9'){x = x * 10 + ch - '0'; ch = getchar();}
return x * f;
}
int cnt = 0;
void ADDE(int u, int v){
E[cnt].u = u; E[cnt].v = v; E[cnt].next = HEAD[u]; HEAD[u] = cnt ++;
}
int k;
void adde(int u, int v){
e[k].v = v; e[k].next = head[u]; head[u] = k++;
}
void input(){
memset(HEAD, -1, sizeof(HEAD));
N = read(); M = read();
for(int i = 1; i <= M; ++i){
int x = read(), y = read();
ADDE(x, y);
}
}
bool find(int u){
for(int i = head[u]; i != -1; i = e[i].next){
int v = e[i].v;
if(!vis[v]){
vis[v] = 1;
if(!belong[v] || find(belong[v])){
belong[v] = u; return true;
}
}
}
return false;
}
void solve(){
int ans = (int)1e9;
for(int i = 1; i <= N; ++i){
memset(head, -1, sizeof(head));
memset(belong, 0, sizeof(belong));
int tot = 0; k = 0;
for(int j = 0; j < M; ++j){
int u = E[j].u, v = E[j].v;
if(u == i || v == i){
tot ++; continue;
}
adde(u, v + N);
}
int num = 0;
for(int j = 1; j <= N; ++j){
memset(vis, 0, sizeof(vis));
if(find(j))num ++;
}
ans = min(ans, 3 * N + M - 2 * tot - 2 * num - 2);
}
printf("%d\n", ans);
}
int main(){
input();
solve();
return 0;
}