栈和队列也是一种数据结构,和顺序表、链表一样,属于线性表,也就是说它们的逻辑结构是线性的。
栈基础知识介绍
看了上面的图示,是不是感觉栈和顺序表有点类似,都是挨着挨着往进存数据,但不同的是顺序表可以在任意位置插入和删除数据(虽然效率不同),但是栈只能在固定的一端进行该操作。
进行插入和删除的一端叫栈顶,另一端叫栈底。栈中的元素都遵循先进后出的原则。因为先进栈的在栈底,后进栈的在栈顶,所以出去的时候顺序就和入栈时相反了。(如图所示)
压栈 \ 入栈:往栈顶插入数据; 出栈:删除栈顶数据。
注意这里说的栈是数据结构,不要和操作系统内存区域划分中的栈搞混了。
经常有人将系统中的栈和数据结构中的栈搞混,下面我来简单区分一下两者。
操作系统中的栈里面放的是局部变量和函数形参等东西,而数据结构说的栈是储存在堆上的,因为它是动态开辟的数据。 在写递归调用、斐波那契数等函数时,有时会发生栈溢出的现象,是因为栈的空间较小,所以我们一般将其改成迭代的方式,或用栈将其改为循环解决。
栈的实现
栈一般用数组来实现,但空间节省要求高时用链表。
有人可能会问为什么不都用链表?链表不仅能节省空间,而且不用扩容,不是更好吗?
单次来说,链表效率确实比顺序表高一点,但是整体而言,顺序表的性能效率甚至要高于链表,这涉及CPU高速缓存命中率了。最关键的是顺序表可以用下标来访问,但是链表不行。因此这里最好用数组。
栈的实现代码与之前顺序表的很相似,而且它更为简单,因为栈遵循先进后出的原则,只能从栈顶插入删除数据,所以不存在头插头删和指定位置插入删除的操作。
代码如下:
//Stack.h(头文件)
#pragma once
#include<stdio.h>
#include<assert.h>
#include<errno.h>
#include<stdlib.h>
#include<stdbool.h>
typedef int STDataType;
typedef struct stack
{
STDataType* a;
int top;
int capacity;
}ST;
void StackInit(ST* ps);
void StackDestory(ST* ps);
void StackPush(ST* ps, STDataType x);
void StackPop(ST* ps);
bool StackEmpty(ST* ps);
STDataType StackTop(ST* ps);
int StackSize(ST* ps);
//Stack.c (栈实现接口)
#include"stack.h"
void StackInit(ST* ps)
{
assert(ps);
ps->a = NULL;
ps->top = ps->capacity = 0;
}
void StackDestory(ST* ps)
{
assert(ps);
free(ps->a);
ps->a = NULL;
ps->top = ps->capacity = 0;
}
void StackPush(ST* ps, STDataType x)
{
assert(ps);
if (ps->top == ps->capacity)
{
int newcapacity = ps->capacity == 0 ? 4 : ps->capacity * 2;
STDataType* tmp = (STDataType*)realloc(ps->a, sizeof(STDataType) * newcapacity);
if (tmp == NULL)
{
perror("malloc fail");
exit(-1);
}
ps->a = tmp;
ps->capacity = newcapacity;
}
ps->a[ps->top] = x;
ps->top++;
}
bool StackEmpty(ST* ps)
{
assert(ps);
return ps->top == 0;
}
void StackPop(ST* ps)
{
assert(ps);
assert(!StackEmpty(ps));
ps->top--;
}
STDataType StackTop(ST* ps)
{
assert(ps);
assert(!StackEmpty(ps));
return ps->a[ps->top - 1];
}
int StackSize(ST* ps)
{
assert(ps);
return ps->top;
}
//test.c (测试函数)
#include"stack.h"
void Test1()
{
ST S;
StackInit(&S);
StackPush(&S, 1);
StackPush(&S, 2);
StackPush(&S, 3);
STDataType top = StackTop(&S);
int num = StackSize(&S);
printf("%d ", StackTop(&S));
StackPop(&S);
StackPush(&S, 4);
StackPush(&S, 5);
while (!StackEmpty(&S))
{
printf("%d ", StackTop(&S));
StackPop(&S);
}
printf("\n");
StackDestory(&S);
}
int main()
{
Test1();
return 0;
}
栈的相关应用(编程题)
来看一道编程题了解一下栈在实际中的作用。
力扣https://leetcode.cn/problems/valid-parentheses/submissions/
这道题用刚刚所讲的栈的有关知识就可以轻松解决。
首先左右括号的匹配不仅仅是数个数,类似示例3这种类型不匹配的也是false。
解题思路:1、先写一个栈的实现函数,将其初始化。 2、用循环来遍历字符串中的每个字符,
如果是左括号 : ' { ' ' ( ' ' [ ' 就StackPush插入到栈顶,如果是右括号,就将栈顶字符弹出比较,如果匹配就删除栈顶字符并继续循环,直到结束或return false,不匹配直接return false。最后销毁。 3、大体思路是这样的,但还有很多细节上面没有考虑:如果字符串中没有右括号,就会不进入匹配条件,导致最后return true。需要在结尾判断栈是否为空,是return true,不是return false。
代码如下:(栈的实现上面写了,加到前面即可)
bool isValid(char * s){
ST P;
StackInit(&P);
while(*s)
{
if(*s == '{' || *s == '[' || *s == '(')
{
StackPush(&P,*s);
}
else
{
if(StackEmpty(&P))
{
StackDestory(&P);
return false;
}
char top = StackTop(&P);
StackPop(&P);
if(*s != '}' && top == '{' ||
*s != ']' && top == '[' ||
*s != ')' && top == '(')
return false;
}
++s;
}
bool flag = StackEmpty(&P);
StackDestory(&P);
return flag;
}
队列基础知识讲解
队列也是一种线性表,与栈只能在一端插入删除数据不同,队列是在一端插入数据,在另一端删除数据,遵循先进先出的原则。
队列的先进先出其实蛮符合我们的理解的,先来的先处理比较符合我们日常的逻辑。
所以队列的现实场景就可以用作抽号机系统。
队列的实现
队列的实现我们用链表,因为要在头部删除数据需要挪动数据,这就是比较麻烦的问题了,所以我们用链表实现。
这里我们用单链表实现,稍微节省一点空间。
代码如下:
//Queue.h
#pragma once
#include<stdio.h>
#include<assert.h>
#include<errno.h>
#include<stdlib.h>
#include<stdbool.h>
typedef int QDataType;
typedef struct QueueNode
{
struct QueueNode* next;
QDataType data;
}QNode;
typedef struct Queue
{
QNode* head;
QNode* tail;
}Queue;
void QueueInit(Queue* p);
void QueueDestory(Queue* p);
void QueuePush(Queue* p, QDataType x);
void QueuePop(Queue* p);
QDataType QueueFront(Queue* p);
QDataType QueueBack(Queue* p);
bool QueueEmpty(Queue* p);
int QueueSize(Queue* p);
//Queue.c
#include"Queue.h"
void QueueInit(Queue* p)
{
assert(p);
p->head = p->tail = NULL;
}
void QueueDestory(Queue* p)
{
assert(p);
QNode* cur = p->head;
while (cur)
{
QNode* del = cur;
cur = cur->next;
free(del);
}
p->head = p->tail = NULL;
}
void QueuePush(Queue* p, QDataType x)
{
assert(p);
QNode* newnode = (QNode*)malloc(sizeof(QNode));
if (newnode == NULL)
{
perror("malloc fail");
exit(-1);
}
else
{
newnode->next = NULL;
newnode->data = x;
}
if (p->tail == NULL)
{
p->head = p->tail = newnode;
}
else
{
p->tail->next = newnode;
p->tail = p->tail->next;
}
}
void QueuePop(Queue* p)
{
assert(p);
assert(!QueueEmpty(p));
if (p->head->next == NULL)
{
free(p->head);
p->head = p->tail = NULL;
}
else
{
QNode* del = p->head;
p->head = p->head->next;
free(del);
}
}
QDataType QueueFront(Queue* p)
{
assert(p);
assert(!QueueEmpty(p));
return p->head->data;
}
QDataType QueueBack(Queue* p)
{
assert(p);
assert(!QueueEmpty(p));
return p->tail->data;
}
bool QueueEmpty(Queue* p)
{
assert(p);
return p->head == NULL;
}
int QueueSize(Queue* p)
{
assert(p);
int count = 0;
QNode* cur = p->head;
while (cur)
{
count++;
cur = cur->next;
}
return count;
}
//test.c
void Test2()
{
Queue S;
QueueInit(&S);
QueuePush(&S, 1);
QueuePush(&S, 2);
QueuePush(&S, 3);
QueuePush(&S, 4);
QueuePop(&S);
QDataType front = QueueFront(&S);
QDataType back = QueueBack(&S);
int num = QueueSize(&S);
QueueDestory(&S);
}
栈和队列相关笔试题
CSDNhttps://mp.csdn.net/mp_blog/creation/editor/126172201?spm=1000.2115.3001.4503
这道题要用两个队列实现栈,思路其实很简单,栈和队列处理数据的方式是相反的,栈是一端处理,先进后出;队列是两端处理,先进先出。
要想实现队列到栈的处理数据方式,就要用两个队列倒数据。用一个队列存储数据,另一个队列为空,需要取出或删除数据(对于栈来说是栈顶)就要将非空队列的数据倒入空队列,将非空队列的最后一个数据取出或删除即可。
代码如下:(先将之前写的队列实现函数放在OJ前面)
typedef struct {
Queue q1;
Queue q2;
} MyStack;
MyStack* myStackCreate() {
MyStack* obj = (MyStack*)malloc(sizeof(MyStack));
QueueInit(&obj->q1);
QueueInit(&obj->q2);
return obj;
}
void myStackPush(MyStack* obj, int x) {
if(!QueueEmpty(&obj->q1))
{
QueuePush(&obj->q1,x);
}
else
{
QueuePush(&obj->q2,x);
}
}
int myStackPop(MyStack* obj) {
Queue* empty = &obj->q1;
Queue* nonempty = &obj->q2;
if(!QueueEmpty(&obj->q1))
{
empty = &obj->q2;
nonempty = &obj->q1;
}
while(QueueSize(nonempty) > 1)
{
QueuePush(empty,QueueFront(nonempty));
QueuePop(nonempty);
}
int top = QueueFront(nonempty);
QueuePop(nonempty);
return top;
}
int myStackTop(MyStack* obj) {
if(!QueueEmpty(&obj->q1))
{
return QueueBack(&obj->q1);
}
else
{
return QueueBack(&obj->q2);
}
}
bool myStackEmpty(MyStack* obj) {
return QueueEmpty(&obj->q1) && QueueEmpty(&obj->q2);
}
void myStackFree(MyStack* obj) {
QueueDestory(&obj->q1);
QueueDestory(&obj->q2);
free(obj);
obj = NULL;
}
力扣https://leetcode.cn/problems/implement-queue-using-stacks/
这道题和上一道刚好相反,是用两个栈实现队列。
大体思路是一致的,就是倒数据的顺序改变一下。
创建两个栈,push栈用来接收插入数据,pop栈用来取出或删除数据(栈中数据先进后出,push到pop中顺序逆置了)
代码如下:(栈的实现函数写在OJ前面)
typedef struct {
ST pushST;
ST popST;
} MyQueue;
MyQueue* myQueueCreate() {
MyQueue* obj = (MyQueue*)malloc(sizeof(MyQueue));
StackInit(&obj->pushST);
StackInit(&obj->popST);
return obj;
}
void myQueuePush(MyQueue* obj, int x) {
StackPush(&obj->pushST,x);
}
void myQueuePushToPop(MyQueue* obj){
if(StackEmpty(&obj->popST))
{
while(!StackEmpty(&obj->pushST))
{
StackPush(&obj->popST,StackTop(&obj->pushST));
StackPop(StackTop(&obj->pushST));
}
}
}
int myQueuePop(MyQueue* obj) {
myQueuePushToPop(obj);
int front = StackTop(&obj->popST);
StackPop(StackTop(&obj->popST));
return front;
}
int myQueuePeek(MyQueue* obj) {
myQueuePushToPop(obj);
int peekfront = StackTop(&obj->popST);
return peekfront;
}
bool myQueueEmpty(MyQueue* obj) {
return StackEmpty(&obj->pushST) && StackEmpty(&obj->popST);
}
void myQueueFree(MyQueue* obj) {
StackDestory(&obj->pushST);
StackDestory(&obj->popST);
free(obj);
}
力扣https://leetcode.cn/problems/design-circular-queue/
设计一个循环队列,从逻辑结构上来说是环状的。
但物理结构还是线性表,还是队列。
这道题的关键在于判断队列的空与满,什么时候空,什么时候满。
给两个指针front与back,front指向头的位置(下标为0),尾指针back指向最后一个位置,这样设计就有一个缺陷。因为back始终是front的后一个,按上面设计的话,back在下标为0的位置时,front下标是-1,就会带来诸多不便和问题。
所以将back设计为最后一个位置的后一个。但是这样也还是有问题,因为是循环队列,back到最后一个位置时就跳回下标为0的位置了。此时就不好判断队列为空还是为满了,因为front == back 时,不能判断back是到最后一个位置了(队列满了)还是队列为空。
此时有两种解决思路:
一、增加一个size变量,用来记录队列中元素个数。这样就可以解决上面front==back的问题。
二、增加一个空间(可以存储数据),比如有5个元素,那就开6个空间,剩一个当作最后一个,也就是back的位置。
最后一个问题是用链表还是用数组,都可以,但是这里还是用数组更好一点,链表在细节处理上会有诸多问题。
代码如下:
typedef struct {
int* a;
int front;
int back;
int N;//空间的大小
} MyCircularQueue;
MyCircularQueue* myCircularQueueCreate(int k) {
MyCircularQueue* obj = (MyCircularQueue*)malloc(sizeof(MyCircularQueue));
obj->a = (int*)malloc(sizeof(int)*(k+1));
obj->front = obj->back = 0;
obj->N = k+1;
return obj;
}
bool myCircularQueueIsEmpty(MyCircularQueue* obj) {
return obj->front == obj->back;
}
bool myCircularQueueIsFull(MyCircularQueue* obj) {
return obj->front == ( (obj->back+1) % obj->N);
}
bool myCircularQueueEnQueue(MyCircularQueue* obj, int value) {
if(!myCircularQueueIsFull(obj))
{
obj->a[obj->back] = value;
obj->back++;
//控制back到尾后回到下标为0的位置
obj->back %= obj->N;
return true;
}
else
{
return false;
}
}
bool myCircularQueueDeQueue(MyCircularQueue* obj) {
if(myCircularQueueIsEmpty(obj))
return false;
else
{
obj->front++;
//控制front到尾后回到下标为0的位置
obj->front %= obj->N;
return true;
}
}
int myCircularQueueFront(MyCircularQueue* obj) {
if(myCircularQueueIsEmpty(obj))
return -1;
else
return obj->a[obj->front];
}
int myCircularQueueRear(MyCircularQueue* obj) {
if(myCircularQueueIsEmpty(obj))
return -1;
//else if(obj->back == 0)
//{
//return obj->a[obj->N-1];
//}
//else
//{
//return obj->a[obj->back-1];
//}
else
{
return obj->a[(obj->back-1+obj->N) % obj->N];
}
}
void myCircularQueueFree(MyCircularQueue* obj) {
free(obj->a);
free(obj);
}
栈和队列的基础讲解就到这里啦,感谢大家!!!