题意:n个数(3 <= N <= 100)的序列,每次取一个数(不可以取最左最右)a[k],这时得到一个权值为a[k]左边的数 * a[k] * a[k]右边的数,问最小权值和。
题目链接:http://poj.org/problem?id=1651
——>>状态:dp[i][j]表示第i个数到第j个数组成的序列的最小权值和。
状态转移方程:dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + a[i] * a[k] * a[j]);(枚举最后一个拿掉的数来更新)
时间复杂度:O(n ^ 3)
#include <cstdio>
#include <algorithm>
#include <cstring>
using std::min;
const int MAXN = 100 + 1;
int a[MAXN];
int dp[MAXN][MAXN];
void Read(int n)
{
for (int i = 1; i <= n; ++i)
{
scanf("%d", a + i);
}
}
void Dp(int n)
{
memset(dp, 0x3f, sizeof(dp));
for (int i = 1; i < n; ++i)
{
dp[i][i + 1] = 0;
}
for (int nLen = 3; nLen <= n; ++nLen)
{
for (int i = 1; i <= n; ++i)
{
int j = i + nLen - 1;
if (j > n) break;
for (int k = i + 1; k < j; ++k)
{
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + a[i] * a[k] * a[j]);
}
}
}
}
void Output(int n)
{
printf("%d\n", dp[1][n]);
}
int main()
{
int n;
while (scanf("%d", &n) == 1)
{
Read(n);
Dp(n);
Output(n);
}
return 0;
}