2022 年上海市大学生程序设计竞赛 个人题解


title : 2022 年上海市大学生程序设计竞赛 个人题解
date : 2022-10-19
tags : ACM,题解
author : Linno


2022 年上海市大学生程序设计竞赛 个人题解

题目链接:https://ac.nowcoder.com/acm/contest/41614

补题进度:6/14

A - Another A+B Problem

因为只有6个位置是空的,直接枚举 1 0 6 10^6 106种情况判字符串是否可行即可。

#include<bits/stdc++.h>
using namespace std;

string E,C;
string ss[]={"0","1","2","3","4","5","6","7","8","9"};

int ex[20],num[20],ban[20];
vector<string>ans; 

void dfs(int stp,string s){
	if(stp==8){
		int a=(s[0]-'0')*10+(s[1]-'0'),b=(s[3]-'0')*10+(s[4]-'0'),c=(s[6]-'0')*10+(s[7]-'0');
		if(a+b!=c) return;
		for(int i=0;i<=9;++i) num[i]=0;
		for(int i=0;i<8;++i){
			if(C[i]=='P'||C[i]=='B'){
				if(s[i]==E[i]) return;
			}
		}
		for(int i=0;i<8;++i) ++num[s[i]-'0']; 
		for(int i=0;i<=9;++i) if(num[i]<ex[i]||(ban[i]&&num[i]>=ban[i])) return;
		ans.emplace_back(s);
		return; 
	}
	if(C[stp]=='G'){  //对的直接放 
		string nxt=s;
		nxt.push_back(E[stp]);
		dfs(stp+1,nxt);
		return;
	}
	for(int i=0;i<=9;++i) dfs(stp+1,s+ss[i]);
}

signed main(){
	ios::sync_with_stdio(0);
	cin.tie(0);cout.tie(0);
	cin>>E>>C;
	for(int i=0;i<8;++i){
		if(E[i]>='0'&&E[i]<='9') if(C[i]=='P'||C[i]=='G') ++ex[E[i]-'0']; //存在的数字 
	}
	for(int i=0;i<8;++i){
		if(E[i]>='0'&&E[i]<='9') if(C[i]=='B') ban[E[i]-'0']=ex[E[i]-'0']+1; //数字最多能有多少个 
	}	
	dfs(0,"");
	cout<<ans.size()<<"\n";
	for(auto s:ans) cout<<s<<"\n";
	return 0;
}

E-Expenditure Reduction

对于一个位置 s t st st开始的匹配,显然后面会一直找最近的 T i T_i Ti。最直观的写法就是存每个字符的位置然后二分,这样最坏是复杂度是 O ( ∑ n m l o g n ) , n , m 分别为 S 和 T 的长度 O(\sum{nm}logn),n,m分别为S和T的长度 O(nmlogn),n,m分别为ST的长度,过不了。 O ( α n ) O(\alpha n) O(αn)预处理 n x t [ i ] [ j ] nxt[i][j] nxt[i][j],即第 i i i位之后最近的字符 j j j所在的位置,这样就可去掉 l o g n logn logn的二分。还有一个小优化就是考虑 S = a a a a a . . . a b a a a . . . , T = a b S=aaaaa...abaaa...,T=ab S=aaaaa...abaaa...,T=ab的数据,我们如果能贪心地匹配最近那一个 T [ 0 ] 和 T [ 1 ] T[0]和T[1] T[0]T[1],这种情况的复杂度直接降低了 n n n倍,当时感觉不加过不了就加上去了。最后还是被卡住了,将输入输出用 s c a n f scanf scanf p u t c h a r putchar putchar代替之后就过了,复杂度 O ( ∑ n m ) O(\sum nm) O(nm)

//#pragma GCC optimize("Ofast", "inline", "-ffast-math")
//#pragma GCC target("avx,sse2,sse3,sse4,mmx")
#include<bits/stdc++.h>
//using namespace std;
const int N=2e5+7;
//std::string S,T;
int nxt[N][150];
char S[N],T[105];

void solve(){
	scanf("%s%s",S,T);
	int slen=strlen(S),tlen=strlen(T);
	int len=slen,nst=0;
	if(tlen==1){
		for(int i=0;i<tlen;++i) putchar(T[i]);puts("");
		return;
	}
	for(int i='a';i<='z';++i) nxt[len][i]=len+1;
	for(int i='0';i<='9';++i) nxt[len][i]=len+1;
	for(int i=slen-1;i>=0;--i){
		for(int j='a';j<='z';++j) nxt[i][j]=(S[i]==(char)j)?i:nxt[i+1][j];
		for(int j='0';j<='9';++j) nxt[i][j]=(S[i]==(char)j)?i:nxt[i+1][j];
	}
	for(int st=0;st<slen;++st){
		if(S[st]!=T[0]||(tlen>1&&nxt[st+1][T[0]]<nxt[st][T[1]])) continue;
		int ed=st,f=1; //记录起点/终点/是否找完  
		for(int j=1;j<tlen;++j){
			int k=nxt[ed+1][T[j]];
			if(k==slen+1){
				f=0;
				break;
			}
			ed=k; //找到了下一个字符
			if(ed-st+1>=len) break;
		}
		if(f&&ed-st+1<len){
			nst=st;
			len=ed-st+1;
		}
	}
	for(int i=nst,j=0;j<len;++j) putchar(S[i+j]);puts("");
} 

signed main(){
	int t;
	scanf("%d",&t);
	while(t--){
		solve();
	}
	return 0;
}

G-Gua!

签到题,注意细节。我特判了 b = = 0 ∣ ∣ r = = 0 b==0||r==0 b==0∣∣r==0,过了样例交就过了。

#include<bits/stdc++.h>
using namespace std;

signed main(){
	ios::sync_with_stdio(0);
	cin.tie(0);cout.tie(0);
	int t;
	cin>>t;
	double b,r,d,s;
	while(t--){
		cin>>b>>r>>d>>s;
		if(b==0||r==0){
			if(d==0) cout<<"ok\n";
			else cout<<"gua!\n";
			continue;
		}
		if(b*(floor(s*r/60.0)+1)<d) cout<<"gua!\n";
		else cout<<"ok\n";
	} 
	return 0;
}

H-Heirloom Painting

首先考虑消除环的影响,最经典的做法就是把序列增长一倍。然后考虑统计答案, d p [ i ] dp[i] dp[i]表示前 i i i位染色的最少需要次数,想一想发现是直接贪,根本不用dp,即 k k k长的一次染色中遇到不同颜色就要从那开始重新涂一次。那么答案就是 d p [ i ] − d p [ i − n ] dp[i]-dp[i-n] dp[i]dp[in]中取最小值。最后考虑无解的情况,当且仅当换上没有连续的 k k k个同颜色块,我比较懒就直接贴个线段树了。(区间内max==min)

#include<bits/stdc++.h>
//#define int long long
using namespace std;
const int N=2e6+7;
const int inf=0x3f3f3f3f;

int n,m,k,a[N],dp[N];

#define ls (p<<1)
#define rs (p<<1|1)
#define mid ((l+r)>>1)
int mx[N<<2],mi[N<<2];
void build(int p,int l,int r){
	if(l==r){
		mx[p]=mi[p]=a[l];
		return;
	}
	build(ls,l,mid);
	build(rs,mid+1,r);
	mx[p]=max(mx[ls],mx[rs]);
	mi[p]=min(mi[ls],mi[rs]);
}

int q_max(int p,int l,int r,int ql,int qr){
	if(ql<=l&&r<=qr) return mx[p];
	int mx=0;
	if(ql<=mid) mx=q_max(ls,l,mid,ql,qr);
	if(qr>mid) mx=max(mx,q_max(rs,mid+1,r,ql,qr));
	return mx; 
}

int q_min(int p,int l,int r,int ql,int qr){
	if(ql<=l&&r<=qr) return mi[p];
	int mi=inf;
	if(ql<=mid) mi=q_min(ls,l,mid,ql,qr);
	if(qr>mid) mi=min(mi,q_min(rs,mid+1,r,ql,qr));
	return mi; 
}

void solve(){
	cin>>n>>m>>k;
	for(int i=1;i<=n;++i) cin>>a[i],a[i+n]=a[i];
	for(int i=1;i<=3*n;++i) dp[i]=inf;
	dp[0]=0;
	int ans=inf,lst,flag=0;
	build(1,1,2*n);
	for(int i=1;i<=n;++i){
		if(q_max(1,1,2*n,i,i+k-1)==q_min(1,1,2*n,i,i+k-1)){
			flag=1;break;
		}
	}
	if(!flag){
		cout<<"-1\n";
		return;
	}
	for(int i=1;i<=2*n;i=lst){
		dp[i]=dp[i-1]+1;lst=i+k;
		for(int cnt=1;cnt<k;++cnt){
			if(a[i+cnt]==a[i]) dp[i+cnt]=dp[i];
			else{
				lst=i+cnt;
				break;
			}
		}
		if(i>=n){
			ans=min(ans,dp[i]-dp[i-n]);
		}
	}
	if(ans>=inf) cout<<"-1\n";
	else cout<<ans<<"\n";
}

signed main(){
	ios::sync_with_stdio(0);
	cin.tie(0);cout.tie(0);
	int t;
	cin>>t;
	while(t--){
		solve();
	} 
	return 0;
}

M-My University Is Better Than Yours

最开始开的就是这道题,一开始看错了写了个树状数组。后面想了想是错的,然后就建图缩点拓扑去做,因为题目是要求的好于有传递性的。感觉就是tarjan+重建图+拓扑这一套流程已经写过无数遍了,看清楚题意就不难。

#include<bits/stdc++.h>
#define mk make_pair
#define pii pair<int,int>
//#define int long long
using namespace std;
const int N=5e5+7;
vector<int>G[N],V[N];

int n,m,deg[N];
int dfn[N],low[N],idx=0;
int stk[N],top=0;
int bel[N],sz[N],vis[N];
map<pii,bool>mp;

inline void tarjan(int x){
	dfn[x]=low[x]=++idx;
	vis[x]=1;
	stk[++top]=x;
	for(auto to:G[x]){
		if(!dfn[to]){
			tarjan(to);
			low[x]=min(low[x],low[to]);
		}else if(vis[to]) low[x]=min(low[x],dfn[to]);
	} 
	if(dfn[x]==low[x]){
		int y;
		while(y=stk[top--]){
			vis[y]=0;
			bel[y]=x;
			if(x==y) break;
			sz[x]+=sz[y];
		}
	}
}

signed main(){
	ios::sync_with_stdio(0);
	cin.tie(0);cout.tie(0);
	cin>>n>>m;
	for(int i=1;i<=n;++i) bel[i]=i,sz[i]=1;
	for(int i=1,lst;i<=m;++i){
		cin>>lst;
		for(int j=2,x;j<=n;++j){
			cin>>x;
			G[lst].emplace_back(x);
			lst=x;
		}
	}
	for(int i=1;i<=n;++i){
		if(!dfn[i]) tarjan(i);
	}
	for(int i=1;i<=n;++i){
		for(auto to:G[i]){
			if(bel[i]==bel[to]) continue;
			if(!mp.count(mk(bel[i],bel[to]))){
				V[bel[to]].emplace_back(bel[i]); //这里要反向建图
				++deg[bel[i]]; 
				mp[mk(bel[i],bel[to])]=1;
			}
		}
	}
	queue<int>q;
	for(int i=1;i<=n;++i) vis[i]=0;
	for(int i=1;i<=n;++i){
		if(bel[i]==i) if(!deg[i]) q.emplace(i);
	}
	while(q.size()){
		int fro=q.front();
		q.pop();
		for(auto to:V[fro]){
			sz[to]+=sz[fro];
			--deg[to];
			if(deg[to]==0) q.emplace(to);
		}
	}
	for(int i=1;i<=n;++i) cout<<sz[bel[i]]-1<<" \n"[i==n];
	return 0;
} 

N-Nine Is Greater Than Ten

签到题,直接比较字符串即可。

#include<bits/stdc++.h>
using namespace std;

string a,b;

signed main(){
	ios::sync_with_stdio(0);
	cin.tie(0);cout.tie(0);
	cin>>a>>b;
	if(a>b) cout<<a<<">"<<b<<"\n";
	else if(a==b) cout<<a<<"="<<b<<"\n";
	else cout<<a<<"<"<<b<<"\n";
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RWLinno

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值