title : 2022 年上海市大学生程序设计竞赛 个人题解
date : 2022-10-19
tags : ACM,题解
author : Linno
2022 年上海市大学生程序设计竞赛 个人题解
题目链接:https://ac.nowcoder.com/acm/contest/41614
补题进度:6/14
A - Another A+B Problem
因为只有6个位置是空的,直接枚举 1 0 6 10^6 106种情况判字符串是否可行即可。
#include<bits/stdc++.h>
using namespace std;
string E,C;
string ss[]={"0","1","2","3","4","5","6","7","8","9"};
int ex[20],num[20],ban[20];
vector<string>ans;
void dfs(int stp,string s){
if(stp==8){
int a=(s[0]-'0')*10+(s[1]-'0'),b=(s[3]-'0')*10+(s[4]-'0'),c=(s[6]-'0')*10+(s[7]-'0');
if(a+b!=c) return;
for(int i=0;i<=9;++i) num[i]=0;
for(int i=0;i<8;++i){
if(C[i]=='P'||C[i]=='B'){
if(s[i]==E[i]) return;
}
}
for(int i=0;i<8;++i) ++num[s[i]-'0'];
for(int i=0;i<=9;++i) if(num[i]<ex[i]||(ban[i]&&num[i]>=ban[i])) return;
ans.emplace_back(s);
return;
}
if(C[stp]=='G'){ //对的直接放
string nxt=s;
nxt.push_back(E[stp]);
dfs(stp+1,nxt);
return;
}
for(int i=0;i<=9;++i) dfs(stp+1,s+ss[i]);
}
signed main(){
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
cin>>E>>C;
for(int i=0;i<8;++i){
if(E[i]>='0'&&E[i]<='9') if(C[i]=='P'||C[i]=='G') ++ex[E[i]-'0']; //存在的数字
}
for(int i=0;i<8;++i){
if(E[i]>='0'&&E[i]<='9') if(C[i]=='B') ban[E[i]-'0']=ex[E[i]-'0']+1; //数字最多能有多少个
}
dfs(0,"");
cout<<ans.size()<<"\n";
for(auto s:ans) cout<<s<<"\n";
return 0;
}
E-Expenditure Reduction
对于一个位置 s t st st开始的匹配,显然后面会一直找最近的 T i T_i Ti。最直观的写法就是存每个字符的位置然后二分,这样最坏是复杂度是 O ( ∑ n m l o g n ) , n , m 分别为 S 和 T 的长度 O(\sum{nm}logn),n,m分别为S和T的长度 O(∑nmlogn),n,m分别为S和T的长度,过不了。 O ( α n ) O(\alpha n) O(αn)预处理 n x t [ i ] [ j ] nxt[i][j] nxt[i][j],即第 i i i位之后最近的字符 j j j所在的位置,这样就可去掉 l o g n logn logn的二分。还有一个小优化就是考虑 S = a a a a a . . . a b a a a . . . , T = a b S=aaaaa...abaaa...,T=ab S=aaaaa...abaaa...,T=ab的数据,我们如果能贪心地匹配最近那一个 T [ 0 ] 和 T [ 1 ] T[0]和T[1] T[0]和T[1],这种情况的复杂度直接降低了 n n n倍,当时感觉不加过不了就加上去了。最后还是被卡住了,将输入输出用 s c a n f scanf scanf和 p u t c h a r putchar putchar代替之后就过了,复杂度 O ( ∑ n m ) O(\sum nm) O(∑nm)。
//#pragma GCC optimize("Ofast", "inline", "-ffast-math")
//#pragma GCC target("avx,sse2,sse3,sse4,mmx")
#include<bits/stdc++.h>
//using namespace std;
const int N=2e5+7;
//std::string S,T;
int nxt[N][150];
char S[N],T[105];
void solve(){
scanf("%s%s",S,T);
int slen=strlen(S),tlen=strlen(T);
int len=slen,nst=0;
if(tlen==1){
for(int i=0;i<tlen;++i) putchar(T[i]);puts("");
return;
}
for(int i='a';i<='z';++i) nxt[len][i]=len+1;
for(int i='0';i<='9';++i) nxt[len][i]=len+1;
for(int i=slen-1;i>=0;--i){
for(int j='a';j<='z';++j) nxt[i][j]=(S[i]==(char)j)?i:nxt[i+1][j];
for(int j='0';j<='9';++j) nxt[i][j]=(S[i]==(char)j)?i:nxt[i+1][j];
}
for(int st=0;st<slen;++st){
if(S[st]!=T[0]||(tlen>1&&nxt[st+1][T[0]]<nxt[st][T[1]])) continue;
int ed=st,f=1; //记录起点/终点/是否找完
for(int j=1;j<tlen;++j){
int k=nxt[ed+1][T[j]];
if(k==slen+1){
f=0;
break;
}
ed=k; //找到了下一个字符
if(ed-st+1>=len) break;
}
if(f&&ed-st+1<len){
nst=st;
len=ed-st+1;
}
}
for(int i=nst,j=0;j<len;++j) putchar(S[i+j]);puts("");
}
signed main(){
int t;
scanf("%d",&t);
while(t--){
solve();
}
return 0;
}
G-Gua!
签到题,注意细节。我特判了 b = = 0 ∣ ∣ r = = 0 b==0||r==0 b==0∣∣r==0,过了样例交就过了。
#include<bits/stdc++.h>
using namespace std;
signed main(){
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
int t;
cin>>t;
double b,r,d,s;
while(t--){
cin>>b>>r>>d>>s;
if(b==0||r==0){
if(d==0) cout<<"ok\n";
else cout<<"gua!\n";
continue;
}
if(b*(floor(s*r/60.0)+1)<d) cout<<"gua!\n";
else cout<<"ok\n";
}
return 0;
}
H-Heirloom Painting
首先考虑消除环的影响,最经典的做法就是把序列增长一倍。然后考虑统计答案, d p [ i ] dp[i] dp[i]表示前 i i i位染色的最少需要次数,想一想发现是直接贪,根本不用dp,即 k k k长的一次染色中遇到不同颜色就要从那开始重新涂一次。那么答案就是 d p [ i ] − d p [ i − n ] dp[i]-dp[i-n] dp[i]−dp[i−n]中取最小值。最后考虑无解的情况,当且仅当换上没有连续的 k k k个同颜色块,我比较懒就直接贴个线段树了。(区间内max==min)
#include<bits/stdc++.h>
//#define int long long
using namespace std;
const int N=2e6+7;
const int inf=0x3f3f3f3f;
int n,m,k,a[N],dp[N];
#define ls (p<<1)
#define rs (p<<1|1)
#define mid ((l+r)>>1)
int mx[N<<2],mi[N<<2];
void build(int p,int l,int r){
if(l==r){
mx[p]=mi[p]=a[l];
return;
}
build(ls,l,mid);
build(rs,mid+1,r);
mx[p]=max(mx[ls],mx[rs]);
mi[p]=min(mi[ls],mi[rs]);
}
int q_max(int p,int l,int r,int ql,int qr){
if(ql<=l&&r<=qr) return mx[p];
int mx=0;
if(ql<=mid) mx=q_max(ls,l,mid,ql,qr);
if(qr>mid) mx=max(mx,q_max(rs,mid+1,r,ql,qr));
return mx;
}
int q_min(int p,int l,int r,int ql,int qr){
if(ql<=l&&r<=qr) return mi[p];
int mi=inf;
if(ql<=mid) mi=q_min(ls,l,mid,ql,qr);
if(qr>mid) mi=min(mi,q_min(rs,mid+1,r,ql,qr));
return mi;
}
void solve(){
cin>>n>>m>>k;
for(int i=1;i<=n;++i) cin>>a[i],a[i+n]=a[i];
for(int i=1;i<=3*n;++i) dp[i]=inf;
dp[0]=0;
int ans=inf,lst,flag=0;
build(1,1,2*n);
for(int i=1;i<=n;++i){
if(q_max(1,1,2*n,i,i+k-1)==q_min(1,1,2*n,i,i+k-1)){
flag=1;break;
}
}
if(!flag){
cout<<"-1\n";
return;
}
for(int i=1;i<=2*n;i=lst){
dp[i]=dp[i-1]+1;lst=i+k;
for(int cnt=1;cnt<k;++cnt){
if(a[i+cnt]==a[i]) dp[i+cnt]=dp[i];
else{
lst=i+cnt;
break;
}
}
if(i>=n){
ans=min(ans,dp[i]-dp[i-n]);
}
}
if(ans>=inf) cout<<"-1\n";
else cout<<ans<<"\n";
}
signed main(){
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
int t;
cin>>t;
while(t--){
solve();
}
return 0;
}
M-My University Is Better Than Yours
最开始开的就是这道题,一开始看错了写了个树状数组。后面想了想是错的,然后就建图缩点拓扑去做,因为题目是要求的好于有传递性的。感觉就是tarjan+重建图+拓扑这一套流程已经写过无数遍了,看清楚题意就不难。
#include<bits/stdc++.h>
#define mk make_pair
#define pii pair<int,int>
//#define int long long
using namespace std;
const int N=5e5+7;
vector<int>G[N],V[N];
int n,m,deg[N];
int dfn[N],low[N],idx=0;
int stk[N],top=0;
int bel[N],sz[N],vis[N];
map<pii,bool>mp;
inline void tarjan(int x){
dfn[x]=low[x]=++idx;
vis[x]=1;
stk[++top]=x;
for(auto to:G[x]){
if(!dfn[to]){
tarjan(to);
low[x]=min(low[x],low[to]);
}else if(vis[to]) low[x]=min(low[x],dfn[to]);
}
if(dfn[x]==low[x]){
int y;
while(y=stk[top--]){
vis[y]=0;
bel[y]=x;
if(x==y) break;
sz[x]+=sz[y];
}
}
}
signed main(){
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
cin>>n>>m;
for(int i=1;i<=n;++i) bel[i]=i,sz[i]=1;
for(int i=1,lst;i<=m;++i){
cin>>lst;
for(int j=2,x;j<=n;++j){
cin>>x;
G[lst].emplace_back(x);
lst=x;
}
}
for(int i=1;i<=n;++i){
if(!dfn[i]) tarjan(i);
}
for(int i=1;i<=n;++i){
for(auto to:G[i]){
if(bel[i]==bel[to]) continue;
if(!mp.count(mk(bel[i],bel[to]))){
V[bel[to]].emplace_back(bel[i]); //这里要反向建图
++deg[bel[i]];
mp[mk(bel[i],bel[to])]=1;
}
}
}
queue<int>q;
for(int i=1;i<=n;++i) vis[i]=0;
for(int i=1;i<=n;++i){
if(bel[i]==i) if(!deg[i]) q.emplace(i);
}
while(q.size()){
int fro=q.front();
q.pop();
for(auto to:V[fro]){
sz[to]+=sz[fro];
--deg[to];
if(deg[to]==0) q.emplace(to);
}
}
for(int i=1;i<=n;++i) cout<<sz[bel[i]]-1<<" \n"[i==n];
return 0;
}
N-Nine Is Greater Than Ten
签到题,直接比较字符串即可。
#include<bits/stdc++.h>
using namespace std;
string a,b;
signed main(){
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
cin>>a>>b;
if(a>b) cout<<a<<">"<<b<<"\n";
else if(a==b) cout<<a<<"="<<b<<"\n";
else cout<<a<<"<"<<b<<"\n";
return 0;
}