2018年上海金马五校程序设计竞赛 E题

题目

Description

Here is an n×m grid, which is made up of 1×1 lattices. You can find many rectangles with different sizes in the grid. Can you calculate the total area of all rectangles?

For example, there is a 2×4 grid in the following figure, and the answer is 80, which equals to 8×1 + 6×2 + 4×3 + 2×4 + 4×2 + 3×4 + 2×6 + 1×8. That means there are eight 1×1, six 1×2, four 1×3, two 1×4, four 2×1, three 2×2, two 2×3 and one 2×4 rectangles.

 

Input

There are several test cases.

Each case contains two integers n and m (1 ≤ nm ≤ 100), denoting the height and width of the grid.

 

 

 

Output

For each test case, print one line containing the total area of all rectangles in the grid.

 

 

Sample Input

 

1 1
2 4

 

Sample Output

 

1
80

 

举个3*3例子吧

9*1*1       6*1*2       3*1*3

6*2*1       4*2*2       2*2*3

3*3*1       2*3*2        1*3*3

第一行9=(3-1+1)*(3-1+1)

          6=(3-1+1)*(3-1+2)

          3=(3-1+1)*(3-1*3)

以此类推得到一个公式

从h*m里面选一个a*b的

个数c=(h-a+1)*(m-b+1)------找位置

代码如下



PS:这道题本身不难,但是找位置,从他的几何意义来考虑的思想很好

补充:印象中还有一个题说的是n*n的正方形被分成n*n份

        问一共有多少个正方形?

        这个题只有一个变量,可以考虑数列。





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值