有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<n<=30),每个物品有一个体积(正整数)。
要求n个物品中,任取若干个装入箱内,使箱子的剩余空间为最小。
输入描述 Input Description
一个整数v,表示箱子容量
一个整数n,表示有n个物品
接下来n个整数,分别表示这n 个物品的各自体积
输出描述 Output Description
一个整数,表示箱子剩余空间。
样例输入 Sample Input
24
6
8
3
12
7
9
7
样例输出 Sample Output
0
大体思路:
基本的背包问题,dp[j]表示在空间为j的情况下所能取得的最大值。
状态转移方程:dp[j]=max(dp[j],dp[j-a[i]]+a[i])
前提是j>=a[i]
代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
int a[31];
int dp[20005];
int main()
{
int v,n;
while(cin>>v>>n)
{
for(int i=1;i<=n;++i){
cin>>a[i];
// dp[i]=v;
}
dp[0]=0;
for(int i=1;i<=n;++i){
for(int j=v;j>=a[i];--j){
dp[j]=max(dp[j],dp[j-a[i]]+a[i]);
}
}
cout<<v-dp[v]<<endl;
}
return 0;
}