hihoCoder 1078 区间查询线段树

这篇博客介绍了如何使用线段树解决区间查询和修改问题,具体场景是根据给定的商品标号和价格,处理商品价格的批量修改和区间价格总和的查询。题目提示解题关键在于利用人的懒惰心,即通过高效数据结构减少重复计算。博主给出了大致思路,认为这是一个区间查询的模板题,可以直接套用线段树模板来解答。
摘要由CSDN通过智能技术生成

题面:

对于小Ho表现出的对线段树的理解,小Hi表示挺满意的,但是满意就够了么?于是小Hi将问题改了改,又出给了小Ho:

假设货架上从左到右摆放了N种商品,并且依次标号为1到N,其中标号为i的商品的价格为Pi。小Hi的每次操作分为两种可能,第一种是修改价格——小Hi给出一段区间[L, R]和一个新的价格NewP,所有标号在这段区间中的商品的价格都变成NewP。第二种操作是询问——小Hi给出一段区间[L, R],而小Ho要做的便是计算出所有标号在这段区间中的商品的总价格,然后告诉小Hi。

那么这样的一个问题,小Ho该如何解决呢?

提示:推动科学发展的除了人的好奇心之外还有人的懒惰心!

输入

每个测试点(输入文件)有且仅有一组测试数据。

每组测试数据的第1行为一个整数N,意义如前文所述。

每组测试数据的第2行为N个整数,分别描述每种商品的重量,其中第i个整数表示标号为i的商品的重量Pi。

每组测试数据的第3行为一个整数Q,表示小Hi进行的操作数。

每组测试数据的第N+4~N+Q+3行,每行分别描述一次操作,每行的开头均为一个属于0或1的数字,分别表示该行描述一个询问和一次商品的价格的更改两种情况。对于第N+i+3行,如果该行描述一个询问,则接下来为两个整数Li, Ri,表示小Hi询问的一个区间[Li, Ri];如果该行描述一次商品的价格的更改,则接下来为三个整数Li,Ri,NewP,表示标号在区间[Li, Ri]的商品的价格全部修改为NewP。

对于100%的数据,满足N<=10^5,Q<=10^5, 1<=Li<=Ri<=N,1<=Pi<=N, 0

大致思路:

区间查询的模板题,直接套就好了。

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+10;
int a[maxn];
int sum[maxn<<2],exc[maxn<<2];
void maintain(int k)
{
    sum[k]=sum[k<<1]+sum[k<<1|1];
}
void pushdown(int lenl,int lenr,int k)
{
    if(exc[k]){
        exc[k<<1]=exc[k];
        exc[k<<1|1]=exc[k];
        sum[k<<1]=exc[k]*lenl;
        sum[k<<1|1]=exc[k]*lenr;
        exc[k]=0;
    }
}
void build(int l,int r,int k)
{
    if(l>r)
        return ;
    if(l==r){
        sum[k]=a[l];
        exc[k]=0;
        return ;
    }
    int mid=(l+r)>>1;
    build(l,mid,k<<1);
    build(mid+1,r,k<<1|1);
    maintain(k);
}
void change(int l,int r,int cl,int cr,int k,int newp)
{
    if(l>r||cl>r||cr<l)
        return ;
    if(l>=cl&&r<=cr){
        sum[k]=newp*(r-l+1);
        exc[k]=newp;
        return ;
    }
    int mid=(l+r)>>1;
    pushdown(mid-l+1,r-mid,k);
    change(l,mid,cl,cr,k<<1,newp);
    change(mid+1,r,cl,cr,k<<1|1,newp);
    maintain(k);
}
int query(int l,int r,int ql,int qr,int k)
{
    if(l>r||ql>r||qr<l)
        return 0;
    if(l>=ql&&r<=qr)
        return sum[k];
    int mid=(l+r)>>1,ans=0;
    pushdown(mid-l+1,r-mid,k);
    if(mid>=l)
        ans+=query(l,mid,ql,qr,k<<1);
    if(mid<r)
        ans+=query(mid+1,r,ql,qr,k<<1|1);
    return ans;
}
int main()
{
    ios::sync_with_stdio(false);
    //freopen("in.txt","r",stdin);
    int n,m,cmd,l,r,newp;
    cin>>n;
    for(int i=1;i<=n;++i)
        cin>>a[i];
    build(1,n,1);
    cin>>m;
    for(int i=0;i<m;++i){
        cin>>cmd>>l>>r;
        if(cmd){
            cin>>newp;
            change(1,n,l,r,1,newp);
        }else
            cout<<query(1,n,l,r,1)<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值