题面:
对于小Ho表现出的对线段树的理解,小Hi表示挺满意的,但是满意就够了么?于是小Hi将问题改了改,又出给了小Ho:
假设货架上从左到右摆放了N种商品,并且依次标号为1到N,其中标号为i的商品的价格为Pi。小Hi的每次操作分为两种可能,第一种是修改价格——小Hi给出一段区间[L, R]和一个新的价格NewP,所有标号在这段区间中的商品的价格都变成NewP。第二种操作是询问——小Hi给出一段区间[L, R],而小Ho要做的便是计算出所有标号在这段区间中的商品的总价格,然后告诉小Hi。
那么这样的一个问题,小Ho该如何解决呢?
提示:推动科学发展的除了人的好奇心之外还有人的懒惰心!
输入
每个测试点(输入文件)有且仅有一组测试数据。
每组测试数据的第1行为一个整数N,意义如前文所述。
每组测试数据的第2行为N个整数,分别描述每种商品的重量,其中第i个整数表示标号为i的商品的重量Pi。
每组测试数据的第3行为一个整数Q,表示小Hi进行的操作数。
每组测试数据的第N+4~N+Q+3行,每行分别描述一次操作,每行的开头均为一个属于0或1的数字,分别表示该行描述一个询问和一次商品的价格的更改两种情况。对于第N+i+3行,如果该行描述一个询问,则接下来为两个整数Li, Ri,表示小Hi询问的一个区间[Li, Ri];如果该行描述一次商品的价格的更改,则接下来为三个整数Li,Ri,NewP,表示标号在区间[Li, Ri]的商品的价格全部修改为NewP。
对于100%的数据,满足N<=10^5,Q<=10^5, 1<=Li<=Ri<=N,1<=Pi<=N, 0
大致思路:
区间查询的模板题,直接套就好了。
代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+10;
int a[maxn];
int sum[maxn<<2],exc[maxn<<2];
void maintain(int k)
{
sum[k]=sum[k<<1]+sum[k<<1|1];
}
void pushdown(int lenl,int lenr,int k)
{
if(exc[k]){
exc[k<<1]=exc[k];
exc[k<<1|1]=exc[k];
sum[k<<1]=exc[k]*lenl;
sum[k<<1|1]=exc[k]*lenr;
exc[k]=0;
}
}
void build(int l,int r,int k)
{
if(l>r)
return ;
if(l==r){
sum[k]=a[l];
exc[k]=0;
return ;
}
int mid=(l+r)>>1;
build(l,mid,k<<1);
build(mid+1,r,k<<1|1);
maintain(k);
}
void change(int l,int r,int cl,int cr,int k,int newp)
{
if(l>r||cl>r||cr<l)
return ;
if(l>=cl&&r<=cr){
sum[k]=newp*(r-l+1);
exc[k]=newp;
return ;
}
int mid=(l+r)>>1;
pushdown(mid-l+1,r-mid,k);
change(l,mid,cl,cr,k<<1,newp);
change(mid+1,r,cl,cr,k<<1|1,newp);
maintain(k);
}
int query(int l,int r,int ql,int qr,int k)
{
if(l>r||ql>r||qr<l)
return 0;
if(l>=ql&&r<=qr)
return sum[k];
int mid=(l+r)>>1,ans=0;
pushdown(mid-l+1,r-mid,k);
if(mid>=l)
ans+=query(l,mid,ql,qr,k<<1);
if(mid<r)
ans+=query(mid+1,r,ql,qr,k<<1|1);
return ans;
}
int main()
{
ios::sync_with_stdio(false);
//freopen("in.txt","r",stdin);
int n,m,cmd,l,r,newp;
cin>>n;
for(int i=1;i<=n;++i)
cin>>a[i];
build(1,n,1);
cin>>m;
for(int i=0;i<m;++i){
cin>>cmd>>l>>r;
if(cmd){
cin>>newp;
change(1,n,l,r,1,newp);
}else
cout<<query(1,n,l,r,1)<<endl;
}
return 0;
}