AB test

数据分析业务题( AB test
为同一个目标制定两个方案,在 同一时间维度,分别让 组成成分相同(相似)的用户群组随机的使用一个方案,收集各群组的用户体验数据和业务数据,最后根据显著性检验分析评估出最好版本正式采用。
问题: 小红书在首页上线了一个新的模块,目的是为了提升用户的浏览时长,请设计
一套分析方案,衡量模块上线后对用户停留时长是否有提升?
解答: 采用 AB 测试 的方法
1. 实验目标:衡量模块上线后对用户停留时长是否提升
2. 将用户均匀分成两组,一组为对照组(不上线新模块),一组为实验组(上线新模
块)。保证 AB 测试中的用户群年龄、性别、城市等用户属性无显著性差异。
3. 确认观测指标:对照组用户和实验组用户每天浏览时间长的平均值,分别为
stay_time_control, stay_time_test
4. 原假设 H0 :用户停留时长没有提升,即 stay_time_control=stay_time_test
备选假设:用户停留时长提升,即 stay_time_control
5. 选择样本量
统计功效 statistical power=1-β ,越大越好,一般情况下不小于 80% ,也就是说 β
要小于 20%
显著水平 signifcance level=α ,越小越好,一般情况下不能超过 5%
● Baseline rate :实验前的历史数据
● Minimum detectable effect :最小可探测效应。
对于判断精度的最低要求,当参数越小,意味着我们对判断精度的要求越高,有能力
检测出 x% 的差别 => 所需样本量越大(statistical power 不变)
6. 确认实验流量:根据计算出来的样本量来确定流量比例( AA 测试可以用来试验 分流
是否有效)
7. 小流量开启灰度实验:目的是验证新模块不会造成什么特别极端的影响
8. 开启实验,时间周期可以选取一周或两周
9. 采集数据比较两个组均值差的区间估计,独立样本 t 检验(总体方差未知 ), 计算 p
10. 如果 p 值小于显著性水平则推翻原假设,备选假设成立,新的模块能显著提升用户停留时长。反之,不能推翻原假设,不能判断新的模块是否能提升用户停留时长。

样本量计算的公式为

整体公式如下:

03-15
### 关于AB测试的概念与实现 #### 一、AB测试简介 AB测试是一种用于评估两种或多种方案优劣的实验方法。它通过将用户随机分配到不同的组别(A组和B组),并观察每种方案的表现来决定最佳选项[^1]。这种方法广泛应用于产品优化、用户体验改进以及营销活动效果分析等领域。 #### 二、AB测试的技术实现方式 在技术层面,AB测试可以通过以下方式进行实现: - **网关层路由**:利用负载均衡器或API网关对请求进行分流处理,使得一部分用户的请求被导向至新功能版本的服务端实例上,而另一部分保持不变继续访问原有服务[^3]。 ```python import random def ab_test(user_id, variant_a_url="http://service-a.example.com", variant_b_url="http://service-b.example.com"): # 基于一定比例分配用户到不同变体 if random.random() < 0.5: return {"url": variant_a_url, "variant": "A"} else: return {"url": variant_b_url, "variant": "B"} # 示例调用 result = ab_test(12345) print(f"User directed to Variant {result['variant']} at URL: {result['url']}") ``` 上述代码片段展示了如何基于概率模型简单地实现一次基础版AB测试逻辑。 #### 三、与其他测试形式的区别 需要注意的是,尽管同属软件质量保障范畴内的手段之一,但AB测试不同于传统的单元测试或者集成测试。前者主要关注实际业务场景下真实用户的交互行为差异对比;后者则是侧重于验证单个独立组件的功能正确与否及其相互间协作关系的有效性[^2]。 #### 四、实施过程中可能遇到的问题及解决建议 当尝试构建自己的AB测试框架时可能会面临诸如数据偏差纠正困难等问题。例如,在某些情况下即使采用了看似公平的比例划分机制仍可能出现样本分布失衡现象从而影响最终结论可靠性。对此可考虑引入更复杂的统计学算法加以调整校正[^4]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值