(poj 1020 Anniversary Cake)<DFS的巧妙剪枝>

传送门


solution

一开始看到数据范围很小,直接二维vis数组暴力模拟是否覆盖
出乎意料的TLE qwq
然后看题解,才发现自己还是naive

  • 一维数组cov[]表示每一列从下到上已经覆盖的格子数
  • 将小正方形从小到大排序,因为小的更灵活,因此先确定大的位置
  • 每次都卡着左下角摆,宁左勿右 #滑稽
  • 重要剪枝:如果某个正方形被摆在第一列(即最左的最小占用列就是第一列),但剩下的正方形没有合法方案,那么这种方案就可以淘汰了。因为此时的正方形是剩下的正方形中最大的,把它先放在当前位置都无法满足条件,那么其它更小更灵活的正方形被放好后它肯定还是找不到合适位置,直接break
  • 还有一个很多题解没有提到的剪枝:
if(s-minl<a[i]) break;

即找到的最大可占用的空间都无法满足当前正方形,那么放好其它比它小的正方形后依然无法为它找到合适位置,说明这种方案不可行,可以break
但是if(x+a[i]-1>s) continue; 此处只能continue,原因:虽然此时找的x是最小覆盖的列,但是这个正方形未必要放在“最宽敞”的地方,因此可以先确定比它小的其它正方形,然后可能还会留下合适的位置


Code

// by spli
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cstdio>
using namespace std;

int T;
int s,n;
int a[20];
bool vis[20];
int cov[20];

bool cmp(int x,int y){
    return x>y;
}

bool dfs(int k){
    if(k==n+1) return 1;
    int minl=0x3f3f3f3f,x=0;
    for(int i=1;i<=s;++i)
        if(minl>cov[i]){
            minl=cov[i];
            x=i;
        }
    for(int i=1;i<=n;++i){
        if(vis[i]) continue;
        if(s-minl<a[i]) break;
        if(x+a[i]-1>s) continue; 
        int j=x;
        for(;j<=s;++j)
            if(cov[j]!=minl) break;
        j--;
        if(j-x+1>=a[i]){
            vis[i]=1;
            for(int c=x;c<=x+a[i]-1;++c) cov[c]+=a[i];  
            if(dfs(k+1)) return 1;      
            for(int c=x;c<=x+a[i]-1;++c) cov[c]-=a[i];  
            vis[i]=0;       
        }
        while(a[i+1]==a[i]) i++;
    }
    return 0;
}

int main(){
    scanf("%d",&T);
    while(T--){
        int sum=0;
        scanf("%d%d",&s,&n);
        for(int i=1;i<=n;++i) scanf("%d",&a[i]),sum+=a[i]*a[i];
        if(sum!=s*s){
            puts("HUTUTU!");
            continue;
        }
        sort(a+1,a+1+n,cmp);
        for(int i=1;i<=s;++i) cov[i]=0;
        for(int i=1;i<=n;++i) vis[i]=0;
        if(dfs(1)) puts("KHOOOOB!");
        else puts("HUTUTU!");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值