poj 1321 棋盘问题 题解

该博客讨论了POJ 1321题目的解题思路,这是一个类似八皇后问题的棋盘放置问题。博客指出,关键在于利用深度搜索算法解决放置K个棋子在n×n棋盘上的问题,同时处理回溯策略。提供了C++实现的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

棋盘问题
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 30740 Accepted: 15208

Description

在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。

Input

输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。

Output

对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。

Sample Input

2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1

Sample Output

2
1


题目大意:POJ上少有的汉字题面,题目意思简单明了,读完题就想起了之前的八皇后问题,八皇后问题是八行八列放八个皇后,这个题是n行n列放k个棋子,同样考察的是深度搜索,这道题难点在回溯上,当放完K个棋子后要回溯把之前放的棋子重新拿起继续搜索!

上代码:

#include <iostream>
#include<string.h>
using namespace std;
int map[110][110],vis[110][110];
int n,k,sum,num;
int check(int x,int y)
{
    int i;
    if(x==0&&map[x][y]) return 1;
    if(!map[x][y]) return 0;
    for(i=0; i<x; i++)
    {
        if(vis[i][y])
            return 0;
    }
    for(i=0; i<y; i++)
    {
        if(vis[x][i])
            return 0;
    }
    return 1;
}
void dfs(int x)
{
    int i;
    if(num==k)
    {
        sum++;
        return;
    }
    if(x>=n) return;
    for(i=0; i<n; i++)
    {
        if(check(x,i))
        {
            vis[x][i]=1;
            num++;
            dfs(x+1);
            vis[x][i]=0;
            num--;
        }
    }
    dfs(x+1);
}
int main()
{
    int i,j;
    char c;
    while(cin>>n>>k&&n!=-1&&k!=-1)
    {
        sum=0;
        num=0;
        memset(map,0,sizeof(map));
        memset(vis,0,sizeof(vis));
        for(i=0; i<n; i++)
        {
            for(j=0; j<n; j++)
            {
                cin>>c;
                if(c=='#') map[i][j]=1;
            }
        }
        dfs(0);
        cout<<sum<<endl;
    }
// cout << "Hello world!" << endl;
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值