关于缺失值(missing value)的处理
在sklearn的preprocessing包中包含了对数据集中缺失值的处理,主要是应用Imputer类进行处理。
首先需要说明的是,numpy的数组中可以使用np.nan/np.NaN(Not A Number)来代替缺失值,对于数组中是否存在nan可以使用np.isnan()来判定。
使用type(np.nan)或者type(np.NaN)可以发现改值其实属于float类型,代码如下:
1
2
3
4
5
6
7
8
|
>>>
type
(np.NaN)
<
type
'float'
>
>>>
type
(np.nan)
<
type
'float'
>
>>> np.NaN
nan
>>> np.nan
nan
|
因此,如果要进行处理的数据集中包含缺失值一般步骤如下:
1、使用字符串'nan'来代替数据集中的缺失值;
2、将该数据集转换为浮点型便可以得到包含np.nan的数据集;
3、使用sklearn.preprocessing.Imputer类来处理使用np.nan对缺失值进行编码过的数据集。
代码如下:
1
2
3
4
5
6
7
8
9
10
|
>>>
from
sklearn.preprocessing
import
Imputer
>>> imp
=
Imputer(missing_values
=
'NaN'
, strategy
=
'mean'
, axis
=
0
)
>>> X
=
np.array([[
1
,
2
], [np.nan,
3
], [
7
,
6
]])
>>> Y
=
[[np.nan,
2
], [
6
, np.nan], [
7
,
6
]]
>>> imp.fit(X)
Imputer(axis
=
0
, copy
=
True
, missing_values
=
'NaN'
, strategy
=
'mean'
, verbose
=
0
)
>>> imp.transform(Y)
array([[
4.
,
2.
],
[
6.
,
3.66666667
],
[
7.
,
6.
]])
|
上述代码使用数组X去“训练”一个Imputer类,然后用该类的对象去处理数组Y中的缺失值,缺失值的处理方式是使用X中的均值(axis=0表示按列进行)代替Y中的缺失值。
当然也可以使用imp对象来对X数组本身进行处理。
通常,我们的数据都保存在文件中,也不一定都是Numpy数组生成的,因此缺失值可能不一定是使用nan来编码的,对于这种情况可以参考以下代码:
1
2
3
4
5
6
7
8
9
10
11
12
|
>>> line
=
'1,?'
>>> line
=
line.replace(
',?'
,
',nan'
)
>>> line
'1,nan'
>>> Z
=
line.split(
','
)
>>> Z
[
'1'
,
'nan'
]
>>> Z
=
np.array(Z,dtype
=
float
)
>>> Z
array([
1.
, nan])
>>> imp.transform(Z)
array([[
1.
,
3.66666667
]])
原文地址:http://www.cnblogs.com/chaosimple/p/4153158.html
|
上述代码line模拟从文件中读取出来的一行数据,使用nan来代替原始数据中的缺失值编码,将其转换为浮点型,然后使用X中的均值填补Z中的缺失值。