原题是leetcode上的第四题https://leetcode.com/problems/median-of-two-sorted-arrays/,我在这里整理成了OJ题目的类型,由用户输入两个数组,然后输出合并后的中间值。
输入:
3 4
1 2 3
2 3 4 5
输出:
3
解决方法的核心是将原问题转变成一个寻找第k小数的问题(假设两个原序列升序排列),这样中位数实际上是第(m+n)/2小的数。所以只要解决了第k小数的问题,原问题也得以解决。
首先假设数组A和B的元素个数都大于k/2,我们比较A[k/2-1]和B[k/2-1]两个元素,这两个元素分别表示A的第k/2小的元素和B的第k/2小的元素。这两个元素比较共有三种情况:>、<和=。如果A[k/2-1]<B[k/2-1],这表示A[0]到A[k/2-1]的元素都在A和B合并之后的前k小的元素中。换句话说,A[k/2-1]不可能大于两数组合并之后的第k小值,所以我们可以将其抛弃。
证明也很简单,可以采用反证法。假设A[k/2-1]大于合并之后的第k小值,我们不妨假定其为第(k+1)小值。由于A[k/2-1]小于B[k/2-1],所以B[k/2-1]至少是第(k+2)小值。但实际上,在A中至多存在k/2-1个元素小于A[k/2-1],B中也至多存在k/2-1个元素小于A[k/2-1],所以小于A[k/2-1]的元素个数至多有k/2+ k/2-2,小于k,这与A[k/2-1]是第(k+1)的数矛盾。
当A[k/2-1]>B[k/2-1]时存在类似的结论。
当A[k/2-1]=B[k/2-1]时,我们已经找到了第k小的数,也即这个相等的元素,我们将其记为m。由于在A和B中分别有k/2-1个元素小于m,所以m即是第k小的数。(这里可能有人会有疑问,如果k为奇数,则m不是中位数。这里是进行了理想化考虑,在实际代码中略有不同,是先求k/2,然后利用k-k/2获得另一个数。)
通过上面的分析,我们即可以采用递归的方式实现寻找第k小的数。此外我们还需要考虑几个边界条件:
- 如果A或者B为空,则直接返回B[k-1]或者A[k-1];
- 如果k为1,我们只需要返回A[0]和B[0]中的较小值;
- 如果A[k/2-1]=B[k/2-1],返回其中一个;
代码:
#include<iostream>
using namespace std;
double findkth(int a[],int m,int b[],int n,int k){
if(m>n)
{
return findkth(b,n,a,m,k);
}
if(m==0)
{
return b[k-1];
}
if(k<=1)
{
return min(a[0],b[0]);
}
int pa=min(k/2,m),pb=k-pa;
if(a[pa-1]<b[pb-1])
{
return findkth(a+pa,m-pa,b,n,k-pa);
}
else if(a[pa-1]>b[pb-1])
{
return findkth(a,m,b+pb,n-pb,k-pb);
}
else return a[pa-1];
}
double findmediannum(int a[],int m,int b[],int n)
{
int k=m+n;
if(k&0x1)
{
cout<<findkth(a,m,b,n,k/2+1)<<endl;
}
else
{
cout<<(findkth(a,m,b,n,k/2)+findkth(a,m,b,n,k/2+1))/2<<endl;
}
}
int main()
{
int a[110],b[110],m,n,k,i;
cin>>m>>n;
for(i=0;i<m;i++)
{
cin>>a[i];
}
for(i=0;i<n;i++)
{
cin>>b[i];
}
findmediannum(a,m,b,n);
}