复杂度为log(m+n)下求有序数组A和B有序合并之后第k小的数

原题是leetcode上的第四题https://leetcode.com/problems/median-of-two-sorted-arrays/,我在这里整理成了OJ题目的类型,由用户输入两个数组,然后输出合并后的中间值。

输入:

  3  4

  1 2 3

   2 3 4 5

输出:

  3

解决方法的核心是将原问题转变成一个寻找第k小数的问题(假设两个原序列升序排列),这样中位数实际上是第(m+n)/2小的数。所以只要解决了第k小数的问题,原问题也得以解决。

首先假设数组A和B的元素个数都大于k/2,我们比较A[k/2-1]和B[k/2-1]两个元素,这两个元素分别表示A的第k/2小的元素和B的第k/2小的元素。这两个元素比较共有三种情况:>、<和=。如果A[k/2-1]<B[k/2-1],这表示A[0]到A[k/2-1]的元素都在A和B合并之后的前k小的元素中。换句话说,A[k/2-1]不可能大于两数组合并之后的第k小值,所以我们可以将其抛弃。

证明也很简单,可以采用反证法。假设A[k/2-1]大于合并之后的第k小值,我们不妨假定其为第(k+1)小值。由于A[k/2-1]小于B[k/2-1],所以B[k/2-1]至少是第(k+2)小值。但实际上,在A中至多存在k/2-1个元素小于A[k/2-1],B中也至多存在k/2-1个元素小于A[k/2-1],所以小于A[k/2-1]的元素个数至多有k/2+ k/2-2,小于k,这与A[k/2-1]是第(k+1)的数矛盾。

当A[k/2-1]>B[k/2-1]时存在类似的结论。

当A[k/2-1]=B[k/2-1]时,我们已经找到了第k小的数,也即这个相等的元素,我们将其记为m。由于在A和B中分别有k/2-1个元素小于m,所以m即是第k小的数。(这里可能有人会有疑问,如果k为奇数,则m不是中位数。这里是进行了理想化考虑,在实际代码中略有不同,是先求k/2,然后利用k-k/2获得另一个数。)

通过上面的分析,我们即可以采用递归的方式实现寻找第k小的数。此外我们还需要考虑几个边界条件:

  • 如果A或者B为空,则直接返回B[k-1]或者A[k-1];
  • 如果k为1,我们只需要返回A[0]和B[0]中的较小值;
  • 如果A[k/2-1]=B[k/2-1],返回其中一个;

代码:

#include<iostream>
using namespace std;
double findkth(int a[],int m,int b[],int n,int k){
    if(m>n)
    {
        return findkth(b,n,a,m,k);
    }
    if(m==0)
    {
        return b[k-1];
    }
    if(k<=1)
    {
        return min(a[0],b[0]);
    }
    int pa=min(k/2,m),pb=k-pa;
    if(a[pa-1]<b[pb-1])
    {
        return findkth(a+pa,m-pa,b,n,k-pa);
    }
    else if(a[pa-1]>b[pb-1])
    {
        return findkth(a,m,b+pb,n-pb,k-pb);
    }
    else return a[pa-1];

}
double findmediannum(int a[],int m,int b[],int n)
{
    int k=m+n;
    if(k&0x1)
    {
        cout<<findkth(a,m,b,n,k/2+1)<<endl;
    }
    else
    {
        cout<<(findkth(a,m,b,n,k/2)+findkth(a,m,b,n,k/2+1))/2<<endl;
    }

}
int main()
{
    int a[110],b[110],m,n,k,i;
    cin>>m>>n;
    for(i=0;i<m;i++)
    {
        cin>>a[i];
    }
    for(i=0;i<n;i++)
    {
        cin>>b[i];
    }
    findmediannum(a,m,b,n);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值