缓存穿透,缓存击穿,缓存雪崩问题描述及解决方案

一、缓存概念知识

1、是什么缓存

我们日常生活中,经常会接触听到缓存这个词,例如,浏览器清空缓存,处理器缓存大小,磁盘缓存等等。经过分类,可以将缓存分为:

  • 硬件缓存: 一般指的是机器上的 CPU、硬盘等等组件的缓存区间,一般是利用的内存作为一块中转区域,都通过内存交互信息,减少系统负载,提供传输效率。
  • 客户端缓存: 一般指的是某些应用,例如浏览器、手机App、视频缓冲等等,都是在加载一次数据后将数据临时存储到本地,当再次访问时候先检查本地缓存中是否存在,存在就不必去远程重新拉取,而是直接读取缓存数据,这样来减少远端服务器压力和加快载入速度。
  • 服务端缓存: 一般指远端服务器上,考虑到客户端请求量多,某些数据请求量大,这些热点数据经常要到数据库中读取数据,给数据库造成压力,还有就是 IO、网络等原因有一定延迟,响应客户端较慢。所以,在一些不考虑实时性的数据中,经常将这些数据存在内存中(内存速度非常快),当请求时候,能够直接读取内存中的数据及时响应。

2、为什么使用缓存

用缓存,主要有解决 高性能 与 高并发 与 减少数据库压力。缓存本质就是将数据存储在内存中,当数据没有发生本质变化的时候,我们应尽量避免直接连接数据库进行查询,因为并发高时很可能会将数据库压塌,而是应去缓存中读取数据,只有缓存中未查找到时再去数据库中查询,这样就大大降低了数据库的读写次数,增加系统的性能和能提供的并发量。

 

3、缓存的优缺点

优点:

  • 加快了响应速度
  • 减少了对数据库的读操作,数据库的压力降低。

缺点:

  • 内存容量相对硬盘小。
  • 缓存中的数据可能与数据库中数据不一致。
  • 因为内存断电就清空数据,存放到内存中的数据可能丢失。

二、Redis 概念知识

1、什么是 Redis

Redis 是一个高性能的 Key-Value 数据库,它是完全开源免费的,而且 Redis 是一个 NoSQL 类型数据库,是为了解决 高并发高扩展大数据存储 等一系列的问题而产生的数据库解决方案,是一个非关系型的数据库。但是,它也是不能替代关系型数据库,只能作为特定环境下的扩充。

2、为什么使用 Redis 作为缓存

  • 支持高可用: Redis 支持 master\slave 主\从机制、sentinal 哨兵模式、cluster 集群模式,这样大大保证了 Redis 运行的稳定和高可用行。
  • 支持多种数据结构: Redis 不仅仅支持简单的 Key/Value 类型的数据,同时还提供 list、set、zset、hash 等数据结构的存储。
  • 支持数据持久化: 可以将内存中的数据持久化在磁盘中,当宕机或者故障重启时,可以再次加载进如 Redis,从而不会或减少数据的丢失。
  • 有很多工具与插件对其支持: Redis 已经在业界广泛使用,已经是成为缓存的首选目标,所以很多语言和工具对其支持,我们只需要简单的操作就可以轻松使用。

 

3、Redis 支持的数据类型

Redis 支持的数据结构类型包括:

  • 字符串(string)
  • 哈希表(hash)
  • 列表(list)
  • 集合(set)
  • 有序集合(zset)

为了保证读取的效率,Redis 把数据对象都存储在内存当中,它可以支持周期性的把更新的数据写入磁盘文件中。而且它还提供了交集和并集,以及一些不同方式排序的操作。

三、缓存后可能遇见的问题

1、缓存穿透

 

缓存穿透: 指查询一个一定不存在的数据,由于缓存是不命中时需要从数据库查询,查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到数据库去查询,造成缓存穿透。

缓存穿透几种解决办法:

  • 缓存空值,在从 DB 查询对象为空时,也要将空值存入缓存,具体的值需要使用特殊的标识, 能和真正缓存的数据区分开,另外将其过期时间设为较短时间。
  • 使用布隆过滤器,布隆过滤器能判断一个 key 一定不存在(不保证一定存在,因为布隆过滤器结构原因,不能删除,但是旧值可能被新值替换,而将旧值删除后它可能依旧判断其可能存在),在缓存的基础上,构建布隆过滤器数据结构,在布隆过滤器中存储对应的 key,如果存在,则说明 key 对应的值为空。

2、缓存击穿

 

缓存击穿: 某个 key 非常热点,访问非常频繁,处于集中式高并发访问的情况,当这个 key 在失效的瞬间,大量的请求就击穿了缓存,直接请求数据库,就像是在一道屏障上凿开了一个洞。

缓存击穿几种解决办法:

  • 设置二级缓存,或者设置热点缓存永不过期,需要根据实际情况进行配置。
  • 使用互斥锁,在执行过程中,如果缓存过期,那么先获取分布式锁,在执行从数据库中加载数据,如果找到数据就存入缓存,没有就继续该有的动作,在这个过程中能保证只有一个线程操作数据库,避免了对数据库的大量请求。

3、缓存雪崩

 

缓存雪崩: 当缓存服务器重启、或者大量缓存集中在某一个时间段失效,这样在失效的时候,也会给后端系统(比如DB)带来很大压力,造成数据库后端故障,从而引起应用服务器雪崩。

缓存雪崩几种解决办法:

  • 缓存组件设计高可用,缓存高可用是指,存储缓存的组件的高可用,能够防止单点故障、机器故障、机房宕机等一系列问题。例如 Redis sentinel 和 Redis Cluster,都实现了高可用。
  • 请求限流与服务熔断降级机制,限制服务请求次数,当服务不可用时快速熔断降级。
  • 设置缓存过期时间一定的随机分布,避免集中在同一时间缓存失效。
  • 定时更新缓存策略,对于实时性要求不高的数据,定时进行更新。

4、缓存一致性

使用缓存很大可能导致数据不一致问题,如下:

  • 更熟数据库成功 -> 更新缓存失败 -> 数据不一致
  • 更新缓存成功 -> 更新数据库失败 -> 数据不一致
  • 更新数据库成功 -> 淘汰缓存失败 -> 数据不一致
  • 淘汰缓存成功 -> 更新数据库失败 -> 查询缓存mis

所以使用缓存时候,应该结合实际情况,考虑缓存的数据是否有一致性需求。

Spring boot结合redis实现缓存

发布了167 篇原创文章 · 获赞 65 · 访问量 26万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 创作都市 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览