PaddlePaddle-快速入门篇

本文介绍了博主在学习百度的深度学习框架PaddlePaddle过程中的心得,主要讲解了PaddlePaddle的快速入门案例,涉及线性回归模型用于预测房价。通过阅读官方提供的代码,理解模型参数的获取、测试集的使用以及如何构建网络进行预测。
摘要由CSDN通过智能技术生成

本博主最近在准备学习入手百度的深度学习架构-PaddlePaddle,本博客是本博主在学习的过程中的一些心得,写下是为了分享一些自己的心得,也是为了方便自己以后查看。

本文章主要针对PaddlePaddle上的快速入门案例的讲解,地址为:http://paddlepaddle.org/

官方提供的代码解决的问题背景为:根据影响房价的13个维度的参数来使用线性回归来进行在新给定13个维度的数据时预测房价

官方代码的逻辑是:

1.使用线性回归进行预测,得有个关于每个维度对结果影响的权值吧,也就是f(x)关于x1,x2,x3....的表达式,包括偏置bias。这个模型的参数从给定文件中进行读取。

其代码为:

2.好了模型的参数咱有了,咱得有个测试集可以开始进行预测了吧。这个好办:


恩~细想一下有了这个测试集我要怎么把这些数据作为输入和给定的模型参数进行结合起来呢,然后输出是什么呢,喔~

构建一个网络来指定输入,

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值