原贴地址:http://blog.leanote.com/post/dawnmagnet/lc518
题目
给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。
示例 1:
输入: amount = 5, coins = [1, 2, 5] 输出: 4 解释: 有四种方式可以凑成总金额: 5=5 5=2+2+1 5=2+1+1+1 5=1+1+1+1+1
示例 2:
输入: amount = 3, coins = [2] 输出: 0 解释: 只用面额2的硬币不能凑成总金额3。
示例 3:
输入: amount = 10, coins = [10] 输出: 1
注意:
你可以假设:
- 0 <= amount (总金额) <= 5000
- 1 <= coin (硬币面额) <= 5000
- 硬币种类不超过 500 种
- 结果符合 32 位符号整数
思路分析
这个题非常简单,我们直接用dp的思想去思考即可。
状态量只有一个,就是金额,也就是说,我们对总金额amount进行dp即可。
dp[i]自然表示的就是总金额为i元时的方案数。
递推公式也很好出,dp[i] += dp[i - coins[t]]
这里有没有发现一个问题,递推式其实跟题目中的某一句话没有关系,”每一种面额的硬币有无数个“,不管硬币的数量有多少,或者是只有一个,我们的递推公式都没有任何变化。
那么如果有之前做过这两类题目的同学,应该就能知道区别了,每一种有无限个,我们从前向后遍历dp数组,每种只有一个的时候,我们从后向前遍历dp数组。
虽然递推式都是dp[i] += dp[i - coins[t]]不变的。
这一点非常关键。
C++代码
class Solution {
public:
int change(int amount, vector<int>& coins) {
vector<int> dp(amount + 1);
dp[0] = 1;
for (auto & coin : coins)
for (int i = 0; i <= amount - coin; ++i)
dp[i + coin] += dp[i];
return dp[amount];
}
};
Rust代码
impl Solution {
pub fn change(amount: i32, coins: Vec<i32>) -> i32 {
let amount = amount as usize;
let mut v = vec![0; amount + 1];
v[0] = 1;
for coin in coins {
for i in 0..=(amount as i32 - coin) {
v[(i + coin) as usize] += v[i as usize];
}
}
v[amount]
}
}