[C++&Rust]LeetCode No.518 零钱兑换 II(每日一题)

原贴地址:http://blog.leanote.com/post/dawnmagnet/lc518

题目

给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。 

 

    示例 1:

    输入: amount = 5, coins = [1, 2, 5]
    输出: 4
    解释: 有四种方式可以凑成总金额:
    5=5
    5=2+2+1
    5=2+1+1+1
    5=1+1+1+1+1
    

    示例 2:

    输入: amount = 3, coins = [2]
    输出: 0
    解释: 只用面额2的硬币不能凑成总金额3。
    

    示例 3:

    输入: amount = 10, coins = [10] 
    输出: 1
    

     

    注意:

    你可以假设:

    • 0 <= amount (总金额) <= 5000
    • 1 <= coin (硬币面额) <= 5000
    • 硬币种类不超过 500 种
    • 结果符合 32 位符号整数

    思路分析

    这个题非常简单,我们直接用dp的思想去思考即可。
    状态量只有一个,就是金额,也就是说,我们对总金额amount进行dp即可。
    dp[i]自然表示的就是总金额为i元时的方案数。
    递推公式也很好出,dp[i] += dp[i - coins[t]]

    这里有没有发现一个问题,递推式其实跟题目中的某一句话没有关系,”每一种面额的硬币有无数个“,不管硬币的数量有多少,或者是只有一个,我们的递推公式都没有任何变化。

    那么如果有之前做过这两类题目的同学,应该就能知道区别了,每一种有无限个,我们从前向后遍历dp数组,每种只有一个的时候,我们从后向前遍历dp数组。

    虽然递推式都是dp[i] += dp[i - coins[t]]不变的。

    这一点非常关键。

    C++代码

    class Solution {
    public:
        int change(int amount, vector<int>& coins) {
            vector<int> dp(amount + 1);
            dp[0] = 1;
            for (auto & coin : coins) 
                for (int i = 0; i <= amount - coin; ++i)
                    dp[i + coin] += dp[i];
            return dp[amount];
        }
    };
    

    Rust代码

    impl Solution {
        pub fn change(amount: i32, coins: Vec<i32>) -> i32 {
            let amount = amount as usize;
            let mut v = vec![0; amount + 1];
            v[0] = 1;
            for coin in coins {
                for i in 0..=(amount as i32 - coin) {
                    v[(i + coin) as usize] += v[i as usize];
                }
            }
            v[amount]
        }
    }
    
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值