【牛客竞赛】Double String题解

题目大意

给定两个字符串A,B,求出满足以下条件的子序列a,b(可以不连续)的数量 ,并对 1 0 9 + 7 10^9+7 109+7取模:

  • a,b分别来自A,B,且长度 l e n g t h length length相同
  • ∃ i ∈ [ 1 , l e n g t h ] \exist i \in [1,length] i[1,length],使得 a i < b i a_i < b_i ai<bi
  • ∀ j ∈ [ 1 , i ) \forall j \in [1, i) j[1,i)​,满足 a j = b j a_j = b_j aj=bj​​。
  • 对于 k ∈ [ i + 1 , l e n g t h ] k \in [i + 1, length] k[i+1,length] a k , b k a_k,b_k ak,bk​没有任何限制。
    题目链接

思路

  • 假如我们已经找到了 A a 1 . . . A a n A_{a1}...A{a_n} Aa1...Aan,和 B b 1 . . . B b n B_{b_1}...B_{b_n} Bb1...Bbn相同,那么我们只需要在 A A A数组 A a n A_{a_n} Aan后面中找到一个字母 A a n + 1 A_{a_{n+1}} Aan+1 ,在 B B B数组 B b n B_{b_n} Bbn后面中找到一个字母 B b n + 1 B_{b_{n+1}} Bbn+1,满足 A a n + 1 < B b n + 1 A_{a_{n+1}} < B_{b_{n+1}} Aan+1<Bbn+1​即可,那么剩下的字母就可以随便选了​。
  • 假设 A A A数组还剩 n n n个数可选, B B B数组还剩 m m m个可选,那么利用组合数学,就可知道共有 ∑ i = 0 m i n ( n , m ) C n i + C m i \sum_{i=0}^{min(n,m)} C_n^i + C_m^i i=0min(n,m)Cni+Cmi种选法。而此式子等于 C n + m n C_{n+m}^n Cn+mn。(具体证明可以参照百度)。(蒟蒻不太会)
  • 那么剩下的就是统计 A , B A,B A,B​数组有多少个字串是相同的了。我们假设 d p [ i ] [ j ] dp[i][j] dp[i][j]​表示在 A A A​数组前 i i i​位, B B B​数组的前 j j j​位中共有几个相同的字串,递推时(有点类似与最长公共子序列):
    • 如果 A [ i ] ≠ B [ j ] A[i] \not= B[j] A[i]=B[j]​,那么它显然是由 A A A​数组前 i − 1 i-1 i1​个字母和 B B B​数组前 j j j​个组成,或者是 A A A​数组前 i i i​个字母和 B B B​数组前 j − 1 j-1 j1​个组成的。但是如果我们直接加上 d p [ i − 1 ] [ j ] , d p [ i ] [ j − 1 ] dp[i-1][j],dp[i][j-1] dp[i1][j],dp[i][j1]​的话,会出现多加的情况,那就是 A A A​数组前 i − 1 i-1 i1​个字母和 B B B​数组前 j − 1 j-1 j1​​个组成的,所以我们要再减去 d p [ i − 1 ] [ j − 1 ] dp[i-1][j-1] dp[i1][j1],综上: d p [ i ] [ j ] = d p [ i − 1 ] [ j ] + d p [ i ] [ j − 1 ] − d p [ i − 1 ] [ j − 1 ] dp[i][j]=dp[i-1][j]+dp[i][j-1]-dp[i-1][j-1] dp[i][j]=dp[i1][j]+dp[i][j1]dp[i1][j1]​​。​
    • 如果 A [ i ] = B [ j ] A[i] = B[j] A[i]=B[j],那么它显然也可以由 d p [ i ] [ j ] = d p [ i − 1 ] [ j ] + d p [ i ] [ j − 1 ] − d p [ i − 1 ] [ j − 1 ] dp[i][j]=dp[i-1][j]+dp[i][j-1]-dp[i-1][j-1] dp[i][j]=dp[i1][j]+dp[i][j1]dp[i1][j1]得到一部分结果,其他的部分,就是由 A A A数组前 i − 1 i-1 i1个字母和 B B B数组前 j − 1 j-1 j1个,再加上 A [ i ] , B [ j ] A[i],B[j] A[i],B[j]两个字母,即 d p [ i − 1 ] [ j − 1 ] dp[i-1][j-1] dp[i1][j1],其次 A [ i ] , B [ j ] A[i],B[j] A[i],B[j]两个字母也可以单独作为结果计算,综上: d p [ i ] [ j ] = d p [ i − 1 ] [ j ] + d p [ i ] [ j − 1 ] + 1 dp[i][j]=dp[i-1][j]+dp[i][j-1]+1 dp[i][j]=dp[i1][j]+dp[i][j1]+1
  • 因为结果是要求对结果进行取模的,而且我们的计算中是存在组合数的,所以不能每次都用费马小定理,所以我们需要预处理出阶乘数组和其对应的乘法逆元数组。

代码

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;

typedef  long long ll;
const int maxN = 2000005, mod = 1000000007;

ll inv[maxN + 1], f[maxN + 1];

string s1, s2;
long long dp[5005][5005];
int len1, len2;

void exgcd(int a, int b, ll &x, ll &y) //拓展欧几里得
{
    if(b == 0) {
        x = 1; y = 0;
        return ;
    }
    exgcd(b, a % b, y, x);
    y -= a / b * x;
}

void init()
{
    f[0] = 1;
    for(int i = 1; i <= maxN; ++i)
        f[i] = f[i - 1] * i % mod; //阶乘数组
    ll x, y;
    exgcd(f[maxN], mod, x, y);
    inv[maxN] = (x % mod + mod) % mod;
    for(int i = maxN - 1; i; --i) {
        inv[i] = inv[i + 1] * (i + 1) % mod; //逆元数组
    }
}

ll C(ll n, ll m)
{
    if(n == m || m == 0)
        return 1;
    if(m > n)
        return 0;
    return (f[n] * inv[m] % mod * inv[n - m] % mod) % mod;
}

int main()
{
    cin >> s1; cin >> s2;
    len1 = s1.length(); len2 = s2.length();
    s1 = " " + s1; s2 = " " + s2;
    init();
    for(int i = 1; i <= len1; ++i) {
        for(int j = 1; j <= len2; ++j) {
            if(s1[i] == s2[j])
                dp[i][j] = (dp[i - 1][j] + dp[i][j - 1] + 1) % mod;
            else
                dp[i][j] = ((dp[i - 1][j] + dp[i][j - 1]) % mod + mod - dp[i - 1][j - 1]) % mod;
        }
    }
    long long ans = 0;
    for(int i = 1; i <= len1; ++i) {
        for(int j = 1; j <= len2; ++j) {
            if(s1[i] < s2[j]) {
                long long n = len1 - i, m = len2 - j;
                ans = (ans + (dp[i - 1][j - 1] + 1ll) * C(1LL * n + m, 1LL * min(n, m)) % mod) % mod;
            }
        }
    }
    cout << ans << endl;
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值