【Codeforces】1658C Shinju and the Lost Permutation 题解

题目大意

定义 b i 为 b_i为 bi一个排列 a a a中前 i i i个数的最大值。
定义操作:把排列 a a a向后移动一位,即,原本最后一个数成为第一个数,原本第一个数成为第二个…
定义 c i c_i ci为向后移动 i − 1 i-1 i1位后,每次生成的 b i b_i bi数组中,不同的数的个数。

现在给定 c c c数组,判断是否存在对应的排列 a a a

原题链接

思路

假设已经移动了 k k k次,每次移动后,最后一个数会到第一个,其它数的顺序不变。也就是说:

  • 如果 a n < a 1 a_n < a_1 an<a1,那么 c [ k + 1 ] = c [ k ] + 1 c[k + 1] = c[k] + 1 c[k+1]=c[k]+1
  • 如果 a n > a i a_n > a_i an>ai,那么 c [ k + 1 ] < c [ k ] c[k + 1] < c[k] c[k+1]<c[k]

也就是说,我们只需要判断 c c c数组中是否存在 c [ k ] > c [ k − 1 ] + 1 c[k] > c[k - 1] + 1 c[k]>c[k1]+1即可。

但是需要注意的是,我们任意向右移动 c c c数组,也应该存在相应的 a a a数组,即 c [ 1 ] − c [ n ] < = 1 c[1] - c[n] <= 1 c[1]c[n]<=1,我们需要特判一下这个条件。

一种直接做法是,我们不妨直接通过向右移动,把 1 1 1转到第一位,这样显然 c [ 1 ] − c [ n ] < 1 c[1] - c[n] < 1 c[1]c[n]<1

代码

#include <bits/stdc++.h>
using namespace std;
 
void solve() {
    int n; cin >> n;
    vector<int> a(n);
    for (int &v: a) cin >> v;
    if (count(a.begin(), a.end(), 1) != 1) {
        cout << "NO\n";
        return;
    }
    int p = find(a.begin(), a.end(), 1) - a.begin();
    rotate(a.begin(), a.begin() + p, a.end());
    for (int i = 1; i < n; ++i) {
        if (a[i] - a[i - 1] > 1) {
            cout << "NO\n";
            return;
        }
    }
    cout << "YES\n";
}
 
int main() {
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    int t; cin >> t;
    while (t--) solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值