题目大意
有 n n n个豆子排成一排,每个豆子有 p i p_i pi的概率被选中.每次随机选一个豆子,将其放到最前面,每次操作的代价是该豆子前面豆子的个数,问在操作无限次后再操作一次,操作代价的期望是多少?
思路
我们设经过无数次操作后,编号为 i i i的豆子前面豆子的数量期望是 c n t i cnt_i cnti。那么答案就是 ∑ p i ∗ c n t i \sum p_i * cnt_i ∑pi∗cnti
那么怎么求
c
n
t
i
cnt_i
cnti呢?我们就需要两两计算了。第
i
i
i个豆子在第
j
j
j个豆子之前,那么就说明我们在
i
,
j
i,j
i,j之中,选择了
i
i
i进行移动,那么概率就是
v
i
,
j
=
p
i
p
i
+
p
j
v_{i,j} = \frac{p_i}{p_i+p_j}
vi,j=pi+pjpi。
而
c
n
t
i
=
∑
v
j
,
i
cnt_i = \sum v_{j,i}
cnti=∑vj,i
所以 a n s = p i ∗ p j p i + p j ans = \frac{p_i*p_j}{p_i+p_j} ans=pi+pjpi∗pj
而答案就是枚举所有的 i , j i,j i,j,求和即可。
本题的思维方向在于,我们很难求出一个序列的出现的概率,所以难以对此进行期望,而求得两个豆子的相对关系较为容易,所以可以以此作为突破口。
E ( x ) = ∑ p ( x i ) ∗ v ( x i ) E(x) = \sum p(x_i) * v(x_i) E(x)=∑p(xi)∗v(xi),其中 p ( x i ) p(x_i) p(xi)为状态 x i x_i xi出现的概率, v ( x i ) v(x_i) v(xi)为该状态对答案的贡献。只要所有的 x i x_i xi能够完整的描述出所有可能状态,那么这么求期望就是正确的。
而假如我们知道了所有 i , j i,j i,j豆子的左右关系,那么显然可以得到整个序列.所以,所有豆子的左右顺序,可以被作为状态。
代码
#include <cstdio>
#include <iostream>
using namespace std;
int n;
const int maxN = 105;
double p[maxN], ans;
int main()
{
scanf("%d", &n);
for(int i = 1; i <= n; ++i)
scanf("%lf", &p[i]);
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j)
if(i != j)
ans += p[i] * p[j] / (p[i] + p[j]);
printf("%lf\n", ans);
return 0;
}