案例一:某婚恋社交软件上,嘉宾资料页显示“ 市政府工作”,头像右下角有“ 国旗小贴纸”,和匹配对象聊天时透露“ 我在政府机关……”
案例二:冬奥会期间,中国健儿勇夺金牌,身披国旗,引起热议。某社交平台网友也受到感染,踊跃进行图片创作,表达自己的爱国情感,其中,有少量损毁国旗的图片也混入其中……
这是音视频社交行业的一个常见场景,其中,用户资料、发布内容、私信对话都可能引发风险。通常情况下,平台采用高召回策略,人工进行审核。这样做的好处是准确率高,但从用户体验和人力成本角度来说,这并不是一个好的选择,尤其是有大量内容产生的时候,人力可能超负荷运转,出现审核错漏。
如果对文本和图片进行情感分析,经由算法对问题图文筛选后,再进行人工审核,人力成本或许能实现大幅压缩。
案例三:某美妆品牌小程序商城里,用户对一款热门商品的评价是:“保湿水滋润度很高,适合冬天使用,夏天用太油腻”
这是电商行业的常见场景,对产品评价进行情感分析,有助于品牌快速了解舆情导向,调整应对策略。
情感分析通常应用在影评、电商评价、舆情分析上。随着技术不断进步,市场上对敏感内容的机审要求不断提升。数美科技近期上线的文本情感正负向分析模型,帮