给你两个字符串 s 和 t ,统计并返回在 s 的 子序列 中 t 出现的个数,结果需要对 109 + 7 取模。
本题主要难在递推公式的推导处,和前面的题不同的是,本题需要统计子序列t在s中出现的次数,而不是是否出现,因此动态规划数组的值是记录子序列出现的次数。做法如下:
(1)dp数组
dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]。
(2)递推公式
注意,这种问题基本分两种情况:s[i - 1] 与 t[j - 1]相等;s[i - 1] 与 t[j - 1] 不相等。
s[i - 1] 与 t[j - 1]相等时,dp[i][j]可以由两部分组成。
一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]。
一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。(我就错在没考虑这点,相等时子序列也有可能在前面已经出现,即s在[0,i - 2]中已经出现过[0,j - 1]的t)例如: s:bagg 和 t:bag ,s[3] 和 t[2]是相同的,但是字符串s也可以不用s[3]来匹配,即用s[0]s[1]s[2]组成的bag。当然也可以用s[3]来匹配,即:s[0]s[1]s[3]组成的bag。
所以当s[i - 1] 与 t[j - 1]相等时,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
当s[i - 1] 与 t[j - 1]不相等时,dp[i][j]只有一部分组成,不用s[i - 1]来匹配(就是模拟在s中删除这个元素),即:dp[i - 1][j],所以递推公式为:dp[i][j] = dp[i - 1][j]
(3)初始化(也是易错点)
从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]和 dp[i][j] = dp[i - 1][j]中可以看出dp[i][j] 是从上方和左上方推导而来,那么 dp[i][0] 和dp[0][j]是一定要初始化的。
dp[i][0] 表示:以i-1为结尾的s可以随便删除元素,出现空字符串的个数。那么dp[i][0]一定都是1,因为也就是把以i-1为结尾的s,删除所有元素,出现空字符串的个数就是1。
再来看dp[0][j],dp[0][j]:空字符串s可以随便删除元素,出现以j-1为结尾的字符串t的个数。那么dp[0][j]一定都是0,s无论如何也变成不了t。
最后就要看一个特殊位置了,即dp[0][0]应该是1,空字符串s,可以删除0个元素,变成空字符串t。
(4)遍历顺序
从上到下,从左到右
(5)举例
代码如下
class Solution {
public:
int numDistinct(string s, string t) {
vector<vector<uint64_t>> dp(s.size() + 1, vector<uint64_t>(t.size() + 1));
for (int i = 0; i < s.size(); i++) dp[i][0] = 1;
for (int j = 1; j < t.size(); j++) dp[0][j] = 0;
for (int i = 1; i <= s.size(); i++) {
for (int j = 1; j <= t.size(); j++) {
if (s[i - 1] == t[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
return dp[s.size()][t.size()];
}
};