第6.4章:StarRocks查询加速——Colocation Join

目录

一、StarRocks数据划分

1.1 分区

1.2 分桶

二、Colocation Join实现原理

2.1 Colocate Join概述

2.2 Colocate Join实现原理

三、应用案例

注:本篇文章阐述的是StarRocks-3.2版本的Colocation Join

官网文章地址:

Colocate Join | StarRocks

一、StarRocks数据划分

    在介绍Colocation Join之前,再回顾下StarRocks的数据划分及tablet多副本机制。

   StarRocks支持两层的数据划分,第一层是Range  Partition,第二层是Hash  Bucket(Tablet)。StarRocks的数据表按照分区分桶规则,被水平切分成若干个数据分片(Tablet,也称作数据分桶 Bucket)存储在不同的be节点上,每个tablet都有多个副本(默认是3副本)。各个 Tablet 之间的数据没有交集,并且在物理上是独立存储的。Tablet 是数据移动、复制等操作的最小物理存储单元。 一个 Tablet 只属于一个数据分区(Partition),而一个 Partition 包含若干个 Tablet。

   下图说明 Table、Partition、Bucket(Tablet) 的关系:

  • 假设Table 按照 Range 的方式按照 date 字段进行分区,得到了 N 个 Partition

  • 每个 Partition 通过相同的 Hash 方式将其中的数据划分为 M 个 Bucket(Tablet)

  • 从逻辑上来说,Bucket 1 可以包含 N 个 Partition 中划分得到的数据,比如下图中的 Tablet 11、Tablet 21、Tablet N1

1.1 分区

    逻辑概念,分区用于将数据划分成不同的区间,主要作用是将一张表按照分区键拆分成不同的管理单元。查询时,通过分区裁剪,可以减少扫描的数据量,显著优化查询性能。

1.2 分桶

    物理概念,StarRocks一般采用Hash算法作为分桶算法。在同一分区内,分桶键哈希值相同的数据会划分到同一个tablet(数据分片),tablet以多副本冗余的形式存储,是数据均衡和恢复的最⼩单位,数据导入和查询最终都下沉到所涉及的 tablet副本上。

二、Colocation Join实现原理

2.1 Colocate Join概述

      在数据分布满足一定条件的前提下,计算节点只需做本地 Join,减少跨节点的数据移动和网络传输开销,提高查询性能。Colocate Join 十分适合几张大表按照相同字段分桶的场景,这样可以将数据预先存储到相同的分桶中,实现本地计算。

    要理解这个算法,需要先了解以下几个概念:

  •  Colocation Group(CG):同一 CG 内的表需遵循相同的 Colocation Group Schema(CGS),即表对应的分桶副本具有一致的分桶键、副本数量和副本放置方式。如此可以保证同一 CG 内,所有表的数据分布在相同一组 BE 节点上。
  • Colocation Group Schema(CGS):用于描述一个 CG 中的Table,和Colocation相关的通用 Schema 信息。包括分桶列类型,分桶数以及副本数等。
  • 分桶编号Bucket Seq:一个表的数据,根据分桶列 Hash、对桶数取模后落在某一个分桶内。假设一个 Table 的分桶数为 8,则共有 [0, 1, 2, 3, 4, 5, 6, 7] 8 个分桶(Bucket)。因此【分桶列 Hash %桶数 】一致的数据会划分到同一个桶中。

2.2 Colocate Join工作原理

     Colocation Join 功能,是将一组拥有相同CGS 的 Table 组成一个 CG。并保证这些 Table 对应的数据分片会落在同一个 BE 节点上。使得当 CG 内的表进行分桶列上的 Join 操作时,可以通过直接进行本地数据 Join,减少数据在节点之间的传输耗时。

  因此核心问题直接转变成【如果保证这些table对应的数据分片会落在同一个be节点上?】

  同一 CG 内的Table必须保证以下属性:

 (1)分桶列和分桶数

   同一 CG内表的分桶键的类型、数量和顺序完全一致,并且桶数一致,从而保证多张表的数据分片能够一一对应地进行分布控制。

   分桶列,即在建表语句中distributed by hash(col1, col2, ...) 中指定的列。分桶列决定了一张表的数据通过哪些列的值进行Hash划分到不同的Tablet 中。同一 CG内的 Table 必须保证分桶列的类型和数量完全一致,并且桶数一致,才能保证多张表的数据分片能够一一对应的进行分布控制。

(2)副本数

  同一个 CG内所有表的所有分区(Partition)的副本数必须一致。如果不一致,可能出现某一个 Tablet 的某一个副本,在同一个 BE 上没有其他的表分片的副本对应。不过,同一个 CG 内的表,分区的个数、范围以及分区列的类型不要求一致。

   ps:同一个 CG 内所有表的分区键,分区数量可以不同。因为Partition只是一个逻辑上的分区,真正影响数据分布在哪一个BE节点的是由Bucket决定的。

    综上,在固定了分桶列和分桶数后,同一个CG内的表会拥有相同的Buckets Seq。而副本数决定了每个分桶内的 Tablet 的多个副本分别存放在哪些 BE 上。假设Buckets Seq为 [0, 1, 2, 3, 4, 5, 6, 7],BE 节点有 [A, B, C, D] 4个。则一个可能的数据分布如下:

    CG 内表的一致的数据分布定义和tablet副本映射,能够保证分桶列值相同的数据都在同一个 BE 节点上,可以进行本地数据 Join。其核心思想是「两次映射」,保证相同的 Distributed Key 的数据会被映射到相同的 Bucket Seq,再保证 Bucket Seq对应的 Bucket 映射到相同的 BE 节点:

三、应用案例

    Colocation Join的使用案例见官网:

Colocate Join | StarRocks本小节介绍如何使用 Colocate Join。icon-default.png?t=N7T8https://docs.starrocks.io/zh/docs/3.1/using_starrocks/Colocate_join/

参考文章:

Apache Doris的Colocation join本地join实现_colocation 怎么做-CSDN博客

Apache Doris的Colocation join本地join实现_colocation 怎么做-CSDN博客

系统架构 | StarRocks

第2.9章:StarRocks表设计--Colocation Join_show colocation_group-CSDN博客

Colocate Join | StarRocks

Apache Doris Join 优化原理介绍 - 掘金

编程小梦|Apache Doris Colocate Join 原理与实践

  • 33
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在OpenEuler 20.03操作系统上使用Pacemaker配置双机高可用集群的步骤如下: 1. 安装软件包 在两台服务器上安装Pacemaker软件包和相关依赖软件包: ``` $ sudo dnf install pacemaker pcs psmisc wget policycoreutils-python-utils # systemctl enable --now pcsd.service ``` 2. 启用HA管理 启用Pacemaker和Corosync在集群节点之间同步数据的服务: ``` # systemctl enable --now pacemaker.service # systemctl enable --now corosync.service ``` 3. 创建HA用户 创建HA用户(用户名和密码需保持一致),并将其添加到Pacemaker管理员组中: ``` # pcs cluster auth <node1> <node2> -u hacluster # pcs cluster setup --start --name mycluster <node1> <node2> ``` 4. 配置资源 配置高可用资源,如IP地址、文件系统和服务: ``` # pcs resource create vip ocf:heartbeat:IPaddr2 ip=10.0.0.100 cidr_netmask=24 op monitor interval=60s # pcs resource create fs ocf:heartbeat:Filesystem device="/dev/sdb1" directory="/mnt/data" fstype="ext4" op defaults # pcs resource create nginx ocf:heartbeat:nginx configfile="/etc/nginx/nginx.conf" op monitor interval=30s ``` 其中,vip为虚拟IP地址,fs为共享文件系统,nginx为服务配置。 5. 配置约束 配置资源之间的约束关系,如启动顺序、关联关系和优先级: ``` # pcs constraint colocation add fs vip INFINITY # pcs constraint order vip then nginx ``` 6. 验证配置 验证配置是否正确: ``` # pcs status ``` 7. 启动集群 启动高可用集群: ``` # pcs cluster start --all ``` 以上为在OpenEuler 20.03操作系统上使用Pacemaker配置双机高可用集群的详细步骤。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值