算法特点:
某个记录为界(该记录称为支点或枢轴),将待排序列分成两部分:
①一部分: 所有记录的关键字大于等于支点记录的关键字
②另一部分: 所有记录的关键字小于支点记录的关键字
算法描述:
1)任取待排序记录序列中的某个记录(例如取第一个记录)作为基准(枢),按照该记录的关键字大小,将整个记录序列划分为左右两个子序列
2)左侧子序列中所有记录的关键字都小于或等于基准记录的关键字
3)右侧子序列中所有记录的关键字都大于基准记录的关键字
4)基准记录则排在这两个子序列中间(这也是该记录最终应安放的位置)。
5)然后分别对这两个子序列重复施行上述方法,直到所有的记录都排在相应位置上为止。
基准记录也称为枢轴(或支点)记录。取序列第一个记录为枢轴记录,其关键字为Pivotkey。指针low指向序列第一个记录位置,指针high指向序列最后一个记录位置。
// 划分: 把数组a[p,r]划分出左区和右区,返回值为枢轴位置j。a[p,r] ==> a[p,j-1] a[j] a[j+1,r]
// ---a[j]为枢轴,该元素已经排好
private int partition(int a[], int p, int r) {
int i = p;// 遍历左边的游标
int j = r + 1;// 遍历右边的游标
int x = a[p];
while (true) {
// 在左区中找一个比x大的数: a[i]
while (a[++i] < x && i < r);// 经过该循环,a[i]就是左区中一个比x大的数 或者 游标往右边出界了
// 在右区中找一个比x小的数: a[j]
while (a[--j] > x);// 经过该循环,a[j]就是右区中一个比x小或相等的数
// 如果出现i>=j,则跳循环
if (i >= j) {
break;
}
// 把a[i]和a[j]交换
swap(a, i, j);
}
// 把枢轴(a[p])交换到j位置,返回j
swap(a, p, j);
return j;
}
private void quickSort(int[] a, int p, int r) {
if (p < r) {// 至少两个数
// 思路:把组数a[p,r]划分成:a[p,q-1], a[q],a[q+1,r]
int q = partition(a, p, r); // 中枢位置
quickSort(a, p, q - 1);// 左区继续
quickSort(a, q + 1, r);// 右区继续
}
}
// @Test
public void quickSort_test() {
int a[] = { 21, 25, 49, 25, 16, 8, -1, 0, 23, 44 };
print(a);
quickSort(a, 0, a.length - 1);
print(a);
}
测试结果如下:
21 25 49 25 16 8 -1 0 23 44
-1 0 8 16 21 23 25 25 44 49
算法分析:
1)快速排序是一个递归过程,快速排序的趟数取决于递归树的高度。
2)如果每次划分对一个记录定位后, 该记录的左侧子序列与右侧子序列的长度相同, 则下一步将是对两个长度减半的子序列进行排序, 这是最理想的情况。
2)如果每次划分对一个记录定位后, 该记录的左侧子序列与右侧子序列的长度相同, 则下一步将是对两个长度减半的子序列进行排序, 这是最理想的情况。
算法评价:
1)时间复杂度:
a.最好情况(每次总是选到中间值作枢轴)T(n)=O(nlogn)
b.最坏情况(每次总是选到最小或最大元素作枢轴)T(n)=O(n²)
2) 空间复杂度:需栈空间以实现递归
最坏情况:S(n)=O(n)
一般情况:S(n)=O(logn)
b.最坏情况(每次总是选到最小或最大元素作枢轴)T(n)=O(n²)
2) 空间复杂度:需栈空间以实现递归
最坏情况:S(n)=O(n)
一般情况:S(n)=O(logn)
@@@@快速排序 优化
可以证明,快速排序算法在平均情况下的时间复杂性和最好情况下一样,也是O(nlogn),这在基于比较的算法类中算是快速的,快速排序也因此而得名。
快速排序算法的性能取决于划分的对称性。因此通过修改partition( )方法,可以设计出采用随机选择策略的快速排序算法,从而使期望划分更对称,更低概率出现最坏情况。
快速排序算法的性能取决于划分的对称性。因此通过修改partition( )方法,可以设计出采用随机选择策略的快速排序算法,从而使期望划分更对称,更低概率出现最坏情况。
因此,可在原划分方法中加入如下代码进行优化:
public static int partition(int a[], int p, int r){
int rand = (int)(Math.random()*(r-p));
swap(a,p,p+rand); //把随机选中的元素换到首元素(枢轴)
…//原算法代码
}