完全背包
时间限制:
3500 ms | 内存限制:
65535 KB
难度:
4
-
描述
-
直接说题意,完全背包定义有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的体积是c,价值是w。求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大。本题要求是背包恰好装满背包时,求出最大价值总和是多少。如果不能恰好装满背包,输出NO
-
输入
-
第一行: N 表示有多少组测试数据(N<7)。
接下来每组测试数据的第一行有两个整数M,V。 M表示物品种类的数目,V表示背包的总容量。(0<M<=2000,0<V<=50000)
接下来的M行每行有两个整数c,w分别表示每种物品的重量和价值(0<c<100000,0<w<100000)
输出
- 对应每组测试数据输出结果(如果能恰好装满背包,输出装满背包时背包内物品的最大价值总和。 如果不能恰好装满背包,输出NO) 样例输入
-
2 1 5 2 2 2 5 2 2 5 1
样例输出
-
NO 1
思路:
对于完全背包问题先把一维状态转移方程写出来:
dp[v]=max(dp[v],dp[v-w[i]]+c[i]) (1<=i<=n,w[i]<=v<=V)
其中v代表背包重量,i代表前i个物品,w[i]代表第i个物品的重量,c[i]代表第i个物品的价值,V为题给背包重量
由题意知需要判断背包能否恰好被装满,而不是背包能盛的最大价值,那我们通过一个技巧使得只有装满重量为v的背包时dp[j]才会是正数。我们知道装满背包一定是从0件物品开始的(放入第一件物品的前一步是0件物品),所以我们将数组dp初始化为无穷小,dp[0]=0(0件物品也是装满的状态),这样凡是背包dp[j]大于等于0的就是装满的。
补充:memset函数无穷大和无穷小初始化: memset(dp,0x3f,sizeof(dp));memset(dp,-0x3f,sizeof(dp));
代码:
#include <stdio.h>
#include <string.h>
#define maxFun(a,b) a>b?a:b
int dp[50010];
int main(){
int n,m,v,c,w;
scanf("%d",&n);
while(n--){
scanf("%d%d",&m,&v);
memset(dp,-0x3f,sizeof(dp));
dp[0]=0;
for(int i=1;i<=m;i++){
scanf("%d%d",&c,&w);
for(int j=c;j<=v;j++){
dp[j]=maxFun(dp[j],dp[j-c]+w);
}
}
if(dp[v]<0){
printf("NO\n");
}else{
printf("%d\n",dp[v]);
}
}
return 0;
}