小红书“可爱经济”来袭,借爆款话题引领情绪价值消费

导语

近期,JELLYCAT掀起一场信念感极强的“无实物表演”,用户们纷纷表示,“这个世界终究颠成了我想要的样子”、“精神状态良好,有种平静的疯感”。

JELLYCAT,成年人的“过家家”

购买“毛绒水煮蛋”时,店员拿铲子按一按鸡蛋玩偶,并询问顾客要单面煎还是双面煎,是否放调料;打包“玉兰芋泥蛋糕”时,店员贴心的挤上奶油,嘱咐要常温保存……在小红书,不少jELLYCAT的“过家家”打包短视频引发了热潮,众多成年人赶赴门店排队,体验“重返童年”的快乐。

在这里插入图片描述
图 | 小红书

千瓜数据显示,小红书话题#大人也爱玩玩具 历史浏览量破亿,成年人亟待打破“刻板印象”,不需要维持稳重、理性,会心一笑的幼稚感,何尝不是一种解压呢。而JELLYCAT这种拟人化和无厘头的做法,恰恰切中了当下年轻人情绪点,完成相应的情感投射,这种治愈的过程,推动JELLYCAT进一步出圈。

在这里插入图片描述
图 | 千瓜数据

新玩法,带动“疯感文旅”出圈

小编发现,JELLYCAT现象(“无实物表演”)正迅速席卷各行各业。

全国各地的文创店,接连出现了臭豆腐JELLYCAT、肉夹馍JELLYCAT、佛跳墙JELLYCAT等“地方特色美食”。以年初走红的天水麻辣烫为例,甘肃博物馆进一步推出了天水麻辣烫文创玩偶,还现场演绎“煮麻辣烫”,引发抢购。“XX城市有自己的Jellycat”,俨然成为一种新型引流模式。

在这里插入图片描述
图 | 小红书

不难看出,文创产品本就火热的市场环境下,表演性的互动式购买体验更能激发消费者对文创产品的购买热情。结合了“文旅+JELLYCAT”,有助于提升城市在地文化的传播效果。

品牌启示:万物皆可JELLYCAT

每个成年人都曾是小孩子,大人也爱玩玩具,洞悉到这点的JELLYCAT品牌迅速出圈,接连带动文旅二创带动各地文化出圈,“万物皆可JELLYCAT”逐渐成为一种新型的营销方式。

实际上,对于品牌而言,一方面也可尝试将周边/产品做成玩偶、拟人化,共鸣顾客的情绪需求,比如林里的小鸭子,每一只都有“鸭设”和名字,不仅吸引了许多收集控,还成为了品牌的名片;从更深层次看,即通过给产品赋予人格,设计仪式感与消费者互动、建立情感联结,让产品更有吸引力。比如霸王茶姬、奈雪等推新品时,花大量笔墨介绍茶的产地或背后的非遗文化,其实就是赋予产品更多个性。

在这里插入图片描述
图 | 小红书

当成年人的这份“幼稚”被理解,被容纳,心底的“小孩”便得以挣脱现实的束缚,跳出身体框架的局限。品牌要做的便是理解“童趣力”,即时洞察消费者的需求变化,保持产品创新,建立情感链接,用最真诚的方式守护大家的童心,实现品牌与消费者之间的双向奔赴。

内容概要:本文将金属腐蚀现象比作游戏角色受到持续伤害(debuff),并采用浓度迁移和损伤方程来建模这一过程。文中首先介绍了浓度迁移的概念,将其比喻为游戏中使角色持续掉血的毒雾效果,并展示了如何利用Numpy矩阵存储浓度场以及通过卷积操作实现浓度扩散。接着引入了损伤方程,用于评估材料随时间累积的损伤程度,同时考虑到材料自身的抗性特性。作者还提供了完整的Python代码示例,演示了如何在一个二维网格环境中模拟24小时内金属表面发生的腐蚀变化,最终得到类似珊瑚状分形结构的腐蚀形态。此外,文章提到可以通过调整模型参数如腐蚀速率、材料抗性等,使得模拟更加贴近实际情况。 适合人群:对材料科学、物理化学感兴趣的科研工作者和技术爱好者,尤其是那些希望通过编程手段深入理解金属腐蚀机制的人群。 使用场景及目标:适用于希望借助数值模拟方法研究金属腐蚀行为的研究人员;可用于教学目的,帮助学生更好地掌握相关理论知识;也可作为工程项目前期评估工具,预测不同条件下金属构件可能遭受的腐蚀损害。 阅读建议:由于文中涉及较多数学公式和编程细节,建议读者具备一定的Python编程基础以及对线性代数有一定了解。对于想要进一步探索该领域的学者来说,可以尝试修改现有代码中的参数设置或者扩展模型维度,从而获得更丰富的研究成果。
基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目),个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相关专业的正在做大作业、毕业设计的学生和需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(
小区物业管理系统是一款基于.NET平台开发的软件应用,用于全面管理住宅小区的日常运营。它通过多种功能提升物业管理效率、优化服务质量,并促进业主与物业之间的沟通。在设计过程中,该系统采用了UML(统一建模语言)来确保其结构化和可维护性。UML是一种标准化的建模工具,通过图形化方式描述系统的结构与行为,帮助开发者理解和实现复杂的软件项目。 本项目涵盖了UML的十大模型图,包括用例图、类图、对象图、序列图、协作图、状态图、活动图、组件图、部署图和包图。这些模型图从不同角度描绘系统,例如用例图展示参与者(如业主、物业人员)与系统功能的交互;类图定义系统中的类、接口及其关系;对象图是类图的实例;序列图和协作图描述对象间的动态交互;状态图和活动图关注行为变化;组件图和部署图关注物理结构;包图则用于组织模块结构。 压缩包中的“杨平.doc”可能是设计者或项目负责人杨平的工作文档,包含项目需求、设计思路等重要信息。“任务书.doc”应明确项目的具体任务要求,如功能需求和性能指标。“小区物业管理系统.mdl”是UML模型文件,记录了系统的详细设计。“小区物业”可能是其他相关文件,如源代码或数据库脚本。整个项目提供了从需求分析到系统实现的完整流程,对于学习.NET开发和理解UML建模技术具有重要参考价值。开发者通过研究这些模型图,能够更好地构建类似的物业管理系统,提升软件工程实践能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值