代理(Agent)乃一种智能实体,具备自主环境感知与决策行动能力,旨在达成既定目标。作为个人或组织之数字化替身,AI代理执行特定任务与交易,其核心价值在于简化工作流程,削减繁复性,并有效降低人力投入与沟通障碍,促进效率与协作的双重提升。简而言之,代理技术让AI成为高效助手,助力个人与组织在复杂多变的环境中更加游刃有余。
一、Agent 是什么?
代理(Agent)是一种智能实体,具备自主环境感知与决策行动能力,旨在达成既定目标。作为个人或组织的数字化替身,AI 代理执行特定任务与交易,其核心价值在于简化工作流程、削减繁复性,并有效降低人力投入与沟通障碍,促进效率与协作的双重提升。简而言之,代理技术让 AI 成为高效助手,助力个人与组织在复杂多变的环境中更加游刃有余。
Agent 的核心决策机制围绕着动态适应与持续优化展开。它使 LLM(大型语言模型)能够依据实时变动的环境信息,灵活选择并执行恰当的行动策略,或对行动结果进行精准评估与判断。这一过程通过多轮迭代不断重复,每一次迭代都基于对环境的深入理解与上一次执行效果的反馈,旨在逐步逼近并最终达成既定目标。Agent 的此种运作模式,确保了其在复杂多变的环境中能够保持高效、灵活与适应性,持续推动任务向成功迈进。其精简的决策流程可表示为:P(感知)→P(规划)→A(行动)。
工程实现上可以拆分出四大块核心模块:推理、记忆、工具、行动。
各大平台通常设有官方 GPTs 应用商店,汇聚了琳琅满目的插件与模型,满足多元化需求。流程图编排功能作为标配,让无编程基础的用户也能通过直观拖拽,迅速构建高效工作流,实现流程自动化。在模型支持方面,部分平台展现开放姿态,兼容多模型选择;而有的则专注于自家大模型深度优化,但无论哪种,均能有效支撑日常工作的顺利进行。插件调用机制的引入,极大增强了平台的灵活性与扩展性,用户可根据实际需求灵活调用各类插件,提升工作效率。至于 Prompt 配置,各平台均展现出创新精神,提供个性化、精细化的配置选项,确保用户能够精确控制模型行为,满足特定场景下的需求。
二、7 种主流 Agent 框架对比
2.1 LangChain
-
特点:作为最知名的框架之一,LangChain 提供了丰富的工具和组件,方便开发者连接不同的语言模型、数据源和应用程序。它强调模块化设计,使得构建复杂的 Agent 应用变得相对容易。通过链式调用不同的模块,能够实现如文档问答、智能客服等多种功能。
-
优势:生态系统丰富,有大量的开源社区支持,开发者可以轻松找到各种预构建的模块和示例代码。对多种主流语言模型(如 OpenAI 的 GPT 系列、Google 的 BERT 等)有良好的兼容性,方便根据需求切换模型。
-
局限:对于初学者来说,其复杂的架构和众多的概念可能有一定的学习门槛。在处理大规模、高并发的应用场景时,性能优化可能需要更多的工作。
2.2 AutoGPT
-
特点:以其高度自主的特性而备受关注。AutoGPT 能够根据给定的目标,自主生成任务计划,并不断迭代执行,直至达成目标。它具备较强的自我思考和决策能力,例如在进行网络搜索、数据分析等任务时,能够自主判断下一步的行动。
-
优势:为实现复杂任务提供了一种全新的思路,极大地减少了人工干预的程度。在一些需要创新性思维或长期规划的任务中,表现出独特的优势,如创意写作、项目规划等。
-
局限:由于其高度自主性,可能会产生一些不可预测的行为,需要进行严格的约束和监控。对计算资源的需求较高,运行成本相对较大。
2.3 BabyAGI
-
特点:专注于简单而有效的任务管理和执行。它基于任务队列的方式,将大任务分解为多个小任务,并按照优先级依次处理。通过这种方式,能够有条不紊地完成复杂的工作流程。
-
优势:架构相对简单,易于理解和部署。在处理一些结构化、流程明确的任务时,表现出高效和稳定的性能。
-
局限:灵活性相对较低,不太适合处理需要高度动态调整和复杂决策的场景。功能相对单一,对于一些综合性的复杂任务支持有限。
2.4 LlamaIndex
-
特点:主要聚焦于知识图谱和文档索引方面。它能够将非结构化的文本数据转化为结构化的知识表示,方便进行高效的查询和推理。在处理大量文档数据时,能够快速定位和提取相关信息。
-
优势:在知识管理和信息检索领域有出色的表现,能够帮助用户快速从海量文档中获取有价值的信息。对中文等多语言的支持较好,适合处理不同语言的文本数据。
-
局限:功能较为集中在知识处理方面,对于其他类型的任务(如对话交互、图像识别等)支持不足。与一些通用的 Agent 框架相比,应用场景相对较窄。
2.5 Microsoft Bot Framework
-
特点:紧密集成了微软的生态系统,包括 Azure 云服务、Microsoft 365 等。提供了丰富的工具和模板,方便开发者构建与微软产品无缝协作的聊天机器人和智能代理。
-
优势:对于已经在使用微软技术栈的企业和开发者来说,具有天然的优势,能够轻松实现与现有系统的集成。在对话管理和自然语言处理方面有一定的技术积累,提供了较好的用户体验。
-
局限:对微软生态系统的依赖较强,在跨平台、跨生态的场景中使用可能会受到一定限制。开发成本可能相对较高,尤其是对于没有微软相关许可证的用户。
2.6 Google Dialogflow
-
特点:以其强大的自然语言理解和对话管理能力而闻名。通过直观的界面和丰富的预构建组件,开发者可以快速构建出智能对话系统,支持多轮对话和意图识别。
-
优势:拥有先进的自然语言处理技术,对多种语言的支持效果良好。与 Google 的其他产品(如 Google Assistant)有良好的集成,方便进行大规模的应用部署。
-
局限:定制化程度相对有限,对于一些特殊需求的场景,可能需要花费较多的精力进行调整。价格相对较高,对于预算有限的开发者或小型企业不太友好。
2.7 Amazon Lex
-
特点:与 AWS 服务无缝集成,提供了强大的语音识别和自然语言处理功能。能够轻松构建出支持语音交互的智能代理,广泛应用于语音助手、客服热线等场景。
-
优势:在语音处理方面表现出色,能够提供高质量的语音识别和合成服务。借助 AWS 的强大计算资源和丰富的服务,可以方便地进行扩展和优化。
-
局限:学习曲线相对较陡,对于不熟悉 AWS 生态系统的开发者来说,上手难度较大。依赖 AWS 的服务,可能会受到 AWS 服务稳定性和地区限制的影响。
三、国内一站式 Agent 搭建平台盘点
3.1 Betteryeah
斑头雁智能科技,其核心团队源自阿里巴巴钉钉的初创精英,专注于打造零门槛 Agent 构建平台,旨在迅速激活并释放大模型的强大潜力。该平台内置了包括 ChatGLM、阿里通义千问、百度千帆在内的国内外顶尖 AI 模型,为用户提供了丰富的选择。
在产品形态上,斑头雁智能科技与 Coze 等前沿平台并驾齐驱,均属于高度集成的平台型产品,为用户提供了一站式解决方案。其开发模式灵活多变,既支持单一 Agent 的精细化打造,也适应于 Multi - Agent 系统的复杂部署,满足不同业务场景下的多样化需求。
面向企业级市场,斑头雁智能科技聚焦 AI 客服、营销、销售等多个关键领域,提供智能化升级的全面解决方案。其官方智能体中心更是汇聚了全类别的智能应用,从全面的智能客服系统,到针对电商、销售、营销、HR 等多个垂直行业的定制化方案,再到快速上手的学习资源,一应俱全,助力企业轻松实现数字化转型与智能化升级。
3.2 Coze
Coze,作为字节精心打造的 AI Bot 开发旗舰平台,致力于赋能开发者,以强大而简洁的界面,加速智能聊天机器人的设计与部署流程。在中文大模型智能体生态中,Coze 以其先驱地位傲视群雄,无论是率先布局的市场先机,还是其在智能体编排工具的成熟度、插件的广泛性、兼容大模型种类的多样性,乃至发布渠道的全面覆盖,均展现出非凡实力。
Coze 平台慷慨开放,无论是其自研的云雀大模型,还是外部知名的 moonshot 等尖端技术,均对开发者免费开放,极大地降低了创新门槛。其卓越的用户体验与庞大的日活用户数,共同构筑了行业内的领先地位,无论是从生态构建、用户体验,还是底层技术支撑来看,Coze 无疑是众多智能体平台中的佼佼者。
不得不提的是字节的另一款 AI 智能对话助手 —— 豆包。豆包以其独特的 prompt 驱动方式,让用户能够轻松定制专属智能体,其亮点在于无缝集成了先进的 TTS(文本到语音)技术,让自定义的智能体能够直接与用户进行语音交互,体验更加自然流畅。相较于 Coze 的全方位智能体构建方案,豆包更像是一款功能精炼、操作快捷的便携式 Coze 版本,尤其适合在移动端快速高效地应用。
3.3 百度千帆 AgentBuilder
百度 AgentBuilder 是一款智能体开发工具,旨在降低智能体开发门槛,让每个人、每个组织都能够成为智能体的开发者。AgentBuilder 是百度推出的三大 AI 开发工具之一,另外两个工具分别是 AppBuilder 和 ModelBuilder。
它是基于文心大模型的智能体平台,也属于平台型产品。该平台支持开发者根据自身行业领域和应用场景选择不同类型的开发方式,提供低成本的 prompt 编排方式。同时,它提供零代码和低代码两种开发模式,适合不同技术背景的开发者。在百度智能体中心,热门的应用主要聚焦在提效、娱乐、生活以及实时热点的高考等方面。
3.4 SkyAgents(昆仑万维)
昆仑万维公司隆重推出天工 SkyAgents,这是一款引领未来的 AI Agents 构建平台,旨在重塑智能应用的创造边界。
天工 SkyAgents 以其先进的技术架构,打造了一个高效、灵活的 AI Agents 构建生态系统。该平台不仅集成了前沿的人工智能技术,还通过模块化设计,让 AI Agent 的创建与部署变得前所未有的简单快捷。区别于传统繁琐的开发流程,天工 SkyAgents 引入了革命性的开发方式。用户仅需通过自然语言输入,即可轻松描述 AI Agent 的功能与行为;同时,可视化拖拽界面更是将复杂的技术操作简化为直观的图形操作,深度集成 Skywork 大语言模型,让 AI Agent 的智能化水平跃升至新高度。
天工 SkyAgents 的智能体,凭借其强大的感知与决策能力,能够精准适配各类具体业务场景。无论是电商平台的个性化推荐、客服系统的智能应答,还是金融领域的风险评估、智能制造的自动化控制,天工 SkyAgents 都能以用户需求为核心,提供定制化的智能解决方案,助力企业实现数字化转型与升级。在天工 SkyAgents 的智能体中心,一个充满活力的社区生态正在形成。这里不仅有官方精心打造的示例 Agents,展示着 AI Agent 的无限可能与最佳实践;更有来自全球的个人开发者,他们通过天工平台贡献自己的智慧与创意,构建了一个丰富多彩、不断更新的 Agent 市场。这个市场不仅为开发者提供了展示自我的舞台,更为用户提供了更多元化、更个性化的 AI 服务选择。
3.5 阿里云魔搭社区
阿里云魔搭社区推出了一款专为开源大语言模型(LLM)量身定制的 AI Agent 开发框架。它在产品形态上进行了革新,不仅完美兼容并优化各类主流 LLM,还提供了一个高度灵活与可扩展的平台,让 AI Agent 的开发与部署更加便捷高效。
该框架支持创建多样化的多模态 AI Agent,涵盖客户服务、个人助理等多个领域,满足不同场景下的智能化需求。用户可以根据具体业务场景,轻松构建出既能处理文本对话,又能理解图像、语音等多类型信息的智能体,实现全方位的用户交互体验。同时,该框架创新性地引入了一键发送指令调用其他 AI 模型的功能,大幅简化了模型集成与协作的流程。从长远来看,该框架设计之初就充分考虑了未来技术的发展趋势,因此它不仅适用于当前多种业务场景,还具备高度的可扩展性和兼容性。
3.6 讯飞的星火友伴
讯飞的星火友伴在智能体构建方面具有独特的优势。它依托讯飞强大的语音识别和自然语言处理技术,为用户提供了便捷的智能体搭建体验。在语音交互方面表现尤为出色,能够实现高精度的语音识别和自然流畅的语音合成,让智能体与用户的对话更加自然亲切。
该平台提供了丰富的模板和组件,方便用户快速构建符合自身需求的智能体。无论是用于智能客服、智能助手还是其他领域,都能通过简单的配置和定制来实现。同时,星火友伴还支持与讯飞的其他产品和服务进行集成,进一步拓展了智能体的应用场景和功能。
3.7 智谱
智谱清言推出的 Agent 平台,除了具备智能体基础的能力之外,还支持自定义插件及使用。在知识库方面具有显著特点,其知识库上传类型支持丰富多样,包括音频、电子书等形式,这对于有多样化知识管理和应用需求的用户来说具有很大的吸引力。
通过自定义插件,用户可以根据自身业务场景和需求,灵活扩展智能体的功能。例如,在特定行业的知识问答、数据分析等场景中,用户可以开发专属插件来提升智能体的针对性和实用性。这种高度的定制化能力,使得智谱的 Agent 平台能够更好地满足不同用户的个性化需求。
四、大家都在用 Agent 做什么?
4.1 智能客服
在电商、金融、电信等众多行业广泛应用。Agent 能够快速理解客户的问题,通过知识库查询、推理等方式,提供准确的解答和解决方案。不仅提高了客服效率,降低了人力成本,还能保证服务的一致性和质量。例如,用户在电商平台咨询商品信息、物流状态时,智能客服 Agent 能够迅速响应并提供帮助。
4.2 智能写作
包括新闻写作、文案创作、小说创作等领域。Agent 可以根据给定的主题、风格和要求,自动生成高质量的文本内容。在新闻报道中,能够快速抓取关键信息并撰写新闻稿件;在营销领域,帮助企业生成吸引人的广告文案和推广内容。
4.3 智能助手
作为个人或企业的智能助手,协助完成日常任务。如日程管理、邮件处理、文件整理等。例如,用户可以通过语音指令让智能助手安排会议、设置提醒,或者帮助筛选重要邮件等,极大地提高了工作和生活的效率。
4.4 智能教育
在在线教育、智能辅导等方面发挥作用。Agent 可以根据学生的学习情况和问题,提供个性化的学习建议和辅导。例如,解答学生的学科问题、提供学习资料推荐、进行作业批改等,实现了教育的智能化和个性化。
4.5 数据分析
帮助企业和研究人员进行数据分析和洞察。Agent 能够自动处理和分析大量的数据,发现数据中的规律和趋势,并生成可视化报告。在市场调研、金融风险分析等领域,为决策者提供有力的数据支持。
4.6 创意设计
在平面设计、室内设计等创意领域,Agent 可以根据用户的需求和偏好,生成设计方案和创意灵感。例如,用户提出对一个海报的设计要求,Agent 能够快速生成多个设计初稿,为设计师提供参考和启发。
4.7 智能运维
在 IT 系统运维、网络管理等方面,Agent 可以实时监测系统状态,预测潜在的故障和风险,并自动采取措施进行修复和优化。确保系统的稳定运行,减少停机时间和运维成本。
五、总结与展望
不同的 Agent 框架和一站式搭建平台各有其特点和优势,适用于不同的场景和用户需求。在选择时,需要综合考虑自身的业务需求、技术能力、预算等因素。随着人工智能技术的不断发展,Agent 的应用场景将更加广泛,功能也将更加完善。未来,我们可以期待更加智能化、个性化、高效化的 Agent 出现,为各个行业带来更多的创新和变革。同时,国内的一站式 Agent 搭建平台也将在技术创新、生态建设等方面不断努力,提升自身的竞争力,为用户提供更好的服务和体验。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。