AI占据2024诺贝尔两大奖项,是否预示着未来AI即一切?

本次诺贝尔物理学和学奖的获得者都与AI息息相关,可谓是“AI领域的大丰收”。

2024年诺贝尔物理学奖揭晓:瑞典皇家科学院公布了2024年诺贝尔物理学奖的获得者。他们是美国的约翰·霍普菲尔德(John J. Hopfield),以及加拿大的杰弗里·辛顿(Geoffrey E. Hinton),表彰他们“通过人工神经网络实现机器学习的基础性发现和发明”。

2024年诺贝尔化学奖揭晓:一半授予大卫·贝克(David Baker)“表彰其在计算蛋白质设计方面的贡献”,另一半共同授予戴密斯·哈萨比斯(Demis Hassabis)和约翰·M·詹伯(John M.Jumper)“表彰他们在蛋白质结构预测方面的贡献”。

全世界化学家们长期以来一直梦想着能够完全理解和掌握生命的化学工具——蛋白质,现在这个梦想触手可及了。大卫·贝克已经掌握了生命的构建模块,并创造出了全新的蛋白质。而戴密斯·哈萨比斯和约翰·M·詹伯已经成功地利用人工智能预测了几乎所有已知蛋白质的结构。

结果公布后,互联网充斥着来自四面八方的疑问:AI拿物理奖和化学奖,是不是跑偏了?

实际上,在当今 AI 技术持续取得突破性进展的时代背景下,AI 已然不再仅仅是科学研究中的辅助性工具,而是逐步演变为理解自然规律、突破研究边界的核心推动力量。

AI 助力突破人类思维局限

物理学中众多现象早已超越人类直觉以及传统的因果思维模式,而 AI 能够以更全面的视角加以处理,协助科学家绕开这些认知层面的障碍,直接从数据中提取出有用信息。AI 强大的计算能力使其可以应对极为复杂的模型和系统,无需进行简化或将其归纳为一个公式或定理。正如Hopfield 和 Hinton 的神经网络模型,能够通过复杂的数据关系“学习”到解决问题的途径。这种能力使得科学研究的进程不再受限于人类思维,而是由机器去探寻最优解。

跨学科融合趋势凸显

AI 不仅在物理学和化学领域展现出强大威力,更已成为众多学科不可或缺的工具。从生物学到天文学,AI 正广泛应用于各个学科领域,帮助科学家解决诸多以往依靠传统方法难以攻克的难题。这种跨学科融合的趋势,预示着未来科学研究将愈发依赖 AI 的力量。AI 的跨学科结合,促使科学探索的边界进一步拓展。它不仅是科学工具的演进,更是思维方式的重大变革。相信未来AI 将与科学家携手,以数据驱动的方式揭示自然界的复杂性与奥秘。

AI不能代替一切,但是AI能够给更多领域带来突破性改变

此次诺贝尔奖的颁发也促使我们深刻思考,或许在面对日益复杂的自然现象时,我们需要跳出传统的思维框架和人类直觉,转而接纳复杂性与多样性。AI 的强大之处就在于它能够处理这种复杂性,并提供超越人类直觉的解决方案。科学的边界在不断变化,我们的思维也必须随之进化。未来,物理学、AI、社会科学可能不再是相互独立的领域,而是融合为一体,以更广泛的方式去理解世界。

算家云——简单、高效、便宜的AI算力服务平台

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值