DeepSeek-R1 70B,作为DeepSeek-R1系列中仅次于671B的次顶级模型,有着接近GPT-4的推理能力。
它不仅能够处理极其复杂的任务,如数学问题解决、编程辅助和科研分析,还能在多种应用场景中展现出色的性能。
然而,强大的模型往往伴随着复杂的部署过程。
R1系列的7B、8B等版本在速度、回答准确性和参数调用上远远低于满血版70B模型,而使用在线官网的问答,经常会出现服务器无响应的情况。那么为了解决大家的痛点,小编今天就教大家如何部署DeepSeek-R1 70B,免费拥有自己的满血AI!
这里为大家提供了本地部署教程:
1、安装ollama
运行命令进行安装:
curl -fsSL https://ollama.com/install.sh | sh
设置模型下载地址、开放ip及端口:
(可选)如有模型地址更改需求,可用下命令:
export OLLAMA_MODELS=/root/sj-tmp/ollama/models
设置ip地址及端口:
export OLLAMA_HOST=0.0.0.0:8080
然后记得通过 vim /root/.bashrc
写入文件
2、运行ollama
直接运行:
ollama serve
等待运行成功后,可以在另一个终端通过api访问:
curl http://127.0.0.1:8080/api/tags
持久运行(后台模式)
如果你需要 ollama 在后台运行,可以使用:
nohup ollama serve > ollama.log 2>&1 &
或者使用 tmux / screen 来保持会话。
3、下载并启动deepseek模型
ollama run deepseek-r1:70b
等待下载完成后,可以直接进行对话:
如何api调用?
可以使用 PowerShell 或 Python 访问它。
✅ PowerShell
如果你想在 PowerShell 里 调用 deepseek-r1:70b 进行推理 :
Invoke-RestMethod -Uri "http://192.168.1.100:8080/api/generate" -Method Post -Body (@{model="deepseek-r1:70b"; prompt="你好,介绍一下自己"} | ConvertTo-Json -Depth 10) -ContentType "application/json"
✅ Python
如果你想在 Python 里调用 :
import requests
import json
url = "http://127.0.0.1:8080/api/generate"
data = {
"model": "deepseek-r1:70b",
"prompt": "在数学中,3.11 和 3.8 谁大?请给出详细分析。",
}
response = requests.post(url, json=data)
# 存储最终的文本结果
text_output = ""
# 逐行解析 JSON
for line in response.text.strip().split("\n"):
try:
json_data = json.loads(line) # 解析每一行 JSON
if "response" in json_data:
text_output += json_data["response"] # 拼接文本
if json_data.get("done", False): # 检查是否完成
break
except json.JSONDecodeError as e:
print("JSON 解析错误:", e)
print("最终结果:", text_output)
4、下载open webui界面
通过 Python pip 🐍 安装
Open WebUI 可以使用 Python 包安装程序 pip 进行安装。在继续之前,请确保您使用的是 Python 3.11 以避免兼容性问题。
(1)安装 Open WebUI: 打开终端并运行以下命令以安装 Open WebUI:
pip install open-webui
运行 Open WebUI: 安装后,您可以通过执行以下命令来启动 Open WebUI:
open-webui serve
等待服务启动之后,可以看到出现 0.0.0.0:8080
的地址,这时我们只需在平台开放端口即可进行访问open webui界面
第一次使用需要进行注册账号:
首次登录需要等待一会儿,进入以后界面如下:
注:如果忘记账号密码导致无法登入界面,可以删除账号信息,选择重新注册:
(1)点击文件管理,输入 /root/miniconda3/lib/python3.11/site-packages/open_webui/data/
的路径并进入
(2)删除下面webui.db这个文件,然后重新启动即可
5、管理 Ollama 实例
正常情况下,进入open webui界面中就能自动获取模型,如果没有可以按照下面操作进行:
要在 Open WebUI 中管理您的 Ollama 实例,请执行以下步骤:
-
转到 Open WebUI 中的 管理员设置 。
-
导航到 Connections > Ollama > Manage (单击下载图标)。
在这里,您可以下载模型、配置设置并管理与 Ollama 的连接。
管理屏幕如下所示:
然后返回对话界面即可进行对话:
还有快速有效的模型下载方式
可以直接从 Model Selector 下载模型。只需输入想要的模型的名称,如果它还不可用,Open WebUI 将提示从 Ollama 下载它。
下面是一个工作原理示例:
如果想跳过 Admin Settings 菜单的导航,直接使用的模型,则此方法非常理想。