体验DeepSeek顶级性能!DeepSeek-R1-70B本地部署全攻略

DeepSeek-R1 70B,作为DeepSeek-R1系列中仅次于671B的次顶级模型,有着接近GPT-4的推理能力。

它不仅能够处理极其复杂的任务,如数学问题解决、编程辅助和科研分析,还能在多种应用场景中展现出色的性能。

然而,强大的模型往往伴随着复杂的部署过程。

R1系列的7B、8B等版本在速度、回答准确性和参数调用上远远低于满血版70B模型,而使用在线官网的问答,经常会出现服务器无响应的情况。那么为了解决大家的痛点,小编今天就教大家如何部署DeepSeek-R1 70B,免费拥有自己的满血AI!

这里为大家提供了本地部署教程:

1、安装ollama

运行命令进行安装:

curl -fsSL https://ollama.com/install.sh | sh

设置模型下载地址、开放ip及端口:

(可选)如有模型地址更改需求,可用下命令:

export OLLAMA_MODELS=/root/sj-tmp/ollama/models

设置ip地址及端口:

export OLLAMA_HOST=0.0.0.0:8080

然后记得通过 vim /root/.bashrc写入文件

2、运行ollama

直接运行:

ollama serve

等待运行成功后,可以在另一个终端通过api访问:

curl http://127.0.0.1:8080/api/tags

持久运行(后台模式)

如果你需要 ollama 在后台运行,可以使用:

nohup ollama serve > ollama.log 2>&1 &

或者使用 tmux / screen 来保持会话。

3、下载并启动deepseek模型

ollama run deepseek-r1:70b

等待下载完成后,可以直接进行对话:

image.png

如何api调用?

可以使用 PowerShell 或 Python 访问它。

✅ PowerShell

如果你想在 PowerShell 里 调用 deepseek-r1:70b 进行推理 :

Invoke-RestMethod -Uri "http://192.168.1.100:8080/api/generate" -Method Post -Body (@{model="deepseek-r1:70b"; prompt="你好,介绍一下自己"} | ConvertTo-Json -Depth 10) -ContentType "application/json"

✅ Python

如果你想在 Python 里调用 :

import requests 
import json 
url = "http://127.0.0.1:8080/api/generate" 
data = { 
"model": "deepseek-r1:70b", 
"prompt": "在数学中,3.11 和 3.8 谁大?请给出详细分析。", 
} 
response = requests.post(url, json=data) 
# 存储最终的文本结果 
text_output = "" 
# 逐行解析 JSON 
for line in response.text.strip().split("\n"): 
try: 
json_data = json.loads(line) # 解析每一行 JSON 
if "response" in json_data: 
text_output += json_data["response"] # 拼接文本 
if json_data.get("done", False): # 检查是否完成 
break 
except json.JSONDecodeError as e: 
print("JSON 解析错误:", e) 
print("最终结果:", text_output) 

4、下载open webui界面

通过 Python pip 🐍 安装
Open WebUI 可以使用 Python 包安装程序 pip 进行安装。在继续之前,请确保您使用的是 Python 3.11 以避免兼容性问题。

(1)安装 Open WebUI: 打开终端并运行以下命令以安装 Open WebUI:

pip install open-webui

运行 Open WebUI: 安装后,您可以通过执行以下命令来启动 Open WebUI:

open-webui serve

等待服务启动之后,可以看到出现 0.0.0.0:8080的地址,这时我们只需在平台开放端口即可进行访问open webui界面

image.png

第一次使用需要进行注册账号:

image.png

首次登录需要等待一会儿,进入以后界面如下:

image.png

注:如果忘记账号密码导致无法登入界面,可以删除账号信息,选择重新注册:

(1)点击文件管理,输入 /root/miniconda3/lib/python3.11/site-packages/open_webui/data/的路径并进入

(2)删除下面webui.db这个文件,然后重新启动即可

image.png

5、管理 Ollama 实例

正常情况下,进入open webui界面中就能自动获取模型,如果没有可以按照下面操作进行:

要在 Open WebUI 中管理您的 Ollama 实例,请执行以下步骤:

  1. 转到 Open WebUI 中的 管理员设置 。

    image.png

    image.png

  2. 导航到 Connections > Ollama > Manage (单击下载图标)。
    在这里,您可以下载模型、配置设置并管理与 Ollama 的连接。

管理屏幕如下所示:

image.png

image.png

然后返回对话界面即可进行对话:

image.png

还有快速有效的模型下载方式

可以直接从 Model Selector 下载模型。只需输入想要的模型的名称,如果它还不可用,Open WebUI 将提示从 Ollama 下载它。

下面是一个工作原理示例:

Ollama 下载提示

如果想跳过 Admin Settings 菜单的导航,直接使用的模型,则此方法非常理想。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值