DeepSeek HuggingFace 70B Llama 版本 (DeepSeek-R1-Distill-Llama-70B)

简简单单 Online zuozuo :本心、输入输出、结果

DeepSeek HuggingFace 70B Llama 版本 (DeepSeek-R1-Distill-Llama-70B)


编辑 | 简简单单 Online zuozuo
地址 | https://blog.csdn.net/qq_15071263


如果觉得本文对你有帮助,欢迎点赞、收藏、评论,谢谢

前言

  1. DeepSeek-R1-Zero 是一种通过大规模强化学习 (RL) 训练的模型,没有监督微调 (SFT) 作为初步步骤,在推理方面表现出了卓越的性能。
  2. 随着 RL 的出现,DeepSeek-R1-Zero 自然而然地出现了许多强大而有趣的
<think>嗯,用户的问题是关于如何通过命令行从Hugging Face下载指定的模型文件,具体是deepseek-ai/DeepSeek-R1-Distill-Llama-70B模型。首先,我需要回想一下Hugging Face的模型下载方法。通常,Hugging Face提供了`huggingface-cli`这个命令行工具,可以用来下载模型和数据集。 首先,用户可能需要安装这个工具。安装命令应该是`pip install huggingface-hub`,对吧?然后,使用`huggingface-cli login`进行登录,不过如果模型是公开的,可能不需要登录。但有些情况下可能需要,比如下载私有模型或者为了确保权限。不过根据引用[2]和引用[3]中的链接,模型似乎是公开的,所以可能不需要登录,但用户手册里通常建议登录,所以这一步可能需要提到。 接下来,下载模型的命令。正确的命令结构应该是`huggingface-cli download`后跟模型ID,也就是`deepseek-ai/DeepSeek-R1-Distill-Llama-70B`。然后需要指定本地保存的目录,比如`--local-dir ./model`。但用户可能需要下载整个仓库,所以需要加上`--local-dir-use-symlinks False`来避免符号链接,直接下载文件。另外,可能还需要排除某些文件,比如安全审核文件,使用`--exclude`参数,例如`--exclude "*.safetensors"`,不过这可能不是必须的,但有时候用户可能想排除大文件或者特定格式,所以需要说明这个选项是可选的。 另外,用户提到的模型名称中有一个可能的笔误,原问题中的模型是DeepSeek-R1-Distill-Llama-7B,但引用[2]中的链接是DeepSeek-R1-Distill-Llama-70B。需要确认模型名称是否正确,因为7B和70B差别很大。用户的问题里可能写错了,根据引用[2],正确的模型是70B版本,所以需要在回答中指出这一点,并给出正确的模型ID,避免用户下载错误。 然后,用户可能没有安装Git LFS,所以需要提醒他们安装,否则大文件可能无法正确下载。此外,使用`git clone`也是一种方法,但需要先安装Git LFS,并初始化。不过使用`huggingface-cli`可能更方便,特别是对于非开发者来说。 另外,用户提到的链接是https://hf-mirror.com,这是一个镜像站点,可能在国内访问更快,所以可能需要提供使用镜像站的方法。比如设置环境变量`HF_ENDPOINT=https://hf-mirror.com`,或者在命令中指定`--endpoint`参数。但`huggingface-cli download`是否支持这个参数呢?可能需要查证,或者建议用户设置环境变量。 还有,用户可能想下载特定的文件,而不是整个仓库。这时候可以用`--include`参数,但如果没有指定,默认是下载全部。所以需要说明如何下载整个仓库或部分文件。 总结下来,步骤应该是: 1. 安装必要的工具(huggingface-hub和Git LFS)。 2. 使用huggingface-cli下载命令,指定模型ID和本地目录。 3. 处理可能的镜像站点问题,以提高下载速度。 4. 验证模型是否正确下载,比如检查文件大小和数量。 同时,要注意用户可能遇到的常见问题,比如网络问题、权限问题、存储空间不足等,需要给出相应的建议,比如使用镜像、确保有足够的空间等。 最后,生成的相关问题需要围绕下载模型的其他方法、加速下载、处理下载中断以及模型文件结构等方面,这些都是用户可能会进一步询问的内容。</think>### 分步解答 以下是使用命令行从Hugging Face下载指定模型的步骤: 1. **安装必要工具** - 安装`huggingface_hub`库: ```bash pip install huggingface_hub ``` - 安装Git LFS(用于大文件下载): ```bash git lfs install ``` 2. **通过命令行下载模型** ```bash huggingface-cli download deepseek-ai/DeepSeek-R1-Distill-Llama-70B --local-dir ./model --local-dir-use-symlinks False ``` - **参数说明**: - `--local-dir ./model`:指定模型保存路径为当前目录下的`model`文件夹 - `--local-dir-use-symlinks False`:直接下载文件而非创建符号链接[^2] 3. **使用镜像加速(可选)** 如果网络连接不稳定,可通过设置环境变量使用国内镜像: ```bash export HF_ENDPOINT=https://hf-mirror.com huggingface-cli download deepseek-ai/DeepSeek-R1-Distill-Llama-70B --local-dir ./model ``` 4. **验证下载** 检查目标目录是否包含以下关键文件: - `config.json`(模型配置文件) - `pytorch_model.bin`(PyTorch权重文件) - `tokenizer.json`(分词器文件) --- ### 关键注意事项 1. **模型名称校正** 引用[2]显示模型实际为`DeepSeek-R1-Distill-Llama-70B`(70B参数),而非问题中的"7B",需确保名称正确。 2. **存储空间要求** 该模型大小约130GB,需确保磁盘空间充足。 3. **断点续传** 若下载中断,重新执行相同命令会自动继续未完成的下载。 --- ### 替代下载方法 通过`git`直接克隆仓库: ```bash git clone https://hf-mirror.com/deepseek-ai/DeepSeek-R1-Distill-Llama-70B cd DeepSeek-R1-Distill-Llama-70B git lfs pull ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

简简单单OnlineZuozuo

感谢哥哥姐姐的打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值