文章目录
第一题
解法一[双指针法]
class Solution {
public:
vector<int> sortedSquares(vector<int>& nums) {
// 双指针法
int left = 0;
int right = nums.size() - 1;
int index = right;
vector<int> new_nums(nums);
while (left <= right){
if (nums[left] * nums [left] > nums[right] * nums[right]){
new_nums[index--] = nums[left] * nums [left];
left++;
}
else {
new_nums[index--] = nums[right] * nums[right];
right--;
}
}
return new_nums;
}
};
解法二[暴力法]
class Solution {
public:
vector<int> sortedSquares(vector<int>& nums) {
//暴力法
for (int i = 0; i < nums.size(); i++){
nums[i] *= nums[i];
}
sort(nums.begin(), nums.end());
return nums;
}
};
总结
- 状态:这道题也做过,所以还是比较顺利地做出来了.
- 关键点:关键在于最大值只有可能出现在数组两端.
- sort为快排,时间复杂度为O(n*logn)
第二题
解法一[暴力法]
class Solution {
public:
int minSubArrayLen(int target, vector<int>& nums) {
//暴力解法 会超时
int min_length = nums.size() + 1;
for (int i = 0; i < nums.size(); i++){
int sum = 0;
for (int j = i; j < nums.size(); j++){
sum += nums[j];
while (sum >= target){
min_length = j - i + 1 < min_length ? (j - i + 1) : min_length;
break;
}
}
}
return min_length == nums.size() + 1 ? 0 : min_length;
}
};
解法二[滑动窗口]
class Solution {
public:
int minSubArrayLen(int target, vector<int>& nums) {
// 滑动窗口解法
int left= 0;
int sum = 0;
int min_length = __INT32_MAX__;
for (int right = 0; right < nums.size(); right++){
sum += nums[right];
while(sum >= target){
min_length = (right - left + 1) < min_length ? (right - left + 1) : min_length;
sum -= nums[left++];
}
}
return min_length == __INT32_MAX__? 0 : min_length;
}
};
总结
- 状态: 只写出来暴力解法, 滑动窗口还是没写出来.
- 关键点: 滑动窗口在于巧妙利用结束位置来更新起始位置, 由于是叠加, 直接减去起始位置的值则可以从新的起始点计算.
- 算法思想: left指针表示子数组的起始位置, right指针表示子数组结束位置.当子数组的和值大于target, 则需要更新起始位置. 因为这时可以获得一个子数祖的长度, 然后while的意义就是在这个子数组里面找到比它更小的子数组长度. 跳出while后, 需要从上一个子数组的起始位置之后开始寻找.
- 算法关键处举例理解: 当前面的数都比较小,然后跟一个比较大的数字后,首先计算子数组和会开始都小于target,而碰到较大的数后就超过target了,但此时如果去掉最前面的比较小的数也可以超过target,例如在[1, 1, 1, 1, 6, 2]中找到target=7就需要一直从第一个加到第五个数才会进入while,然后才继续在这个子数组里面找更小的子数组,一直循环到单独一个数字6小于7才会跳出while,此时以left = 0, 1, 2, 3开头的子数组都已经遍历完了,继续从left=4开始的子数组遍历.
- 这题区间的定义为左闭右闭.
- 32位最大int值为__INT32_MAX__.
第三题
解法一[左闭右闭]
class Solution {
public:
vector<vector<int>> generateMatrix(int n) {
// 左闭右闭
vector<vector<int>> matrix(n, vector<int>(n, 0));
int loop = 1; //loop表示圈数
int x = 0; // x起始坐标
int y = 0; // y起始坐标
int k = 1;
int length = n - 1; // 圈边的长度
while (loop <= n / 2){
// 从左到右
for (int i = x, j = y; j <= y + length - 1; j++){
matrix[i][j] = k++;
}
//从上到下
for (int i = x, j = y + length; i <= x + length - 1; i++){
matrix[i][j] = k++;
}
// 从右到左
for (int i = x + length, j = y + length; j >= y + 1; j--){
matrix[i][j] = k++;
}
// 从下到上
for (int i = x + length , j = y; i >= x + 1; i--){
matrix[i][j] = k++;
}
x++;
y++;
length -= 2;
loop++;
}
if ((n % 2) != 0){
matrix[n / 2][n / 2] = k;
}
return matrix;
}
};
解法二[左闭右开]
class Solution {
public:
vector<vector<int>> generateMatrix(int n) {
// 左闭右开
vector<vector<int>> matrix(n, vector<int>(n, 0));
int x = 0;
int y = 0;
int loop = n / 2;
int count = 1;
int offset = 1;
int i, j;
while (loop--){
i = x;
j = y;
for (j = y; j < n - offset; j++){
matrix[i][j] = count++;
}
for (i = x; i < n - offset; i++){
matrix[i][j] = count++;
}
for (; j > y; j--){
matrix[i][j] = count++;
}
for (; i > x; i--){
matrix[i][j] = count++;
}
x++;
y++;
offset++;
}
if ( n % 2 != 0){
matrix[n / 2][n / 2] = count;
}
return matrix;
}
};
总结:
-
状态:较为艰难的写出来了左闭右闭.
-
关键点:主要在于需要想到转圈的方法,不断更新圈的起始位置,然后从左到右,从上到下,从右到左,从下到上遍历,需要处理好边界问题.
-
左闭右开和左闭右闭再次用到.
学到的基础知识
Int 极限值
int max_value = __INT32_MAX__;
二维数组定义
vector<vector<int>> matrix(n); // 先指定一维数组大小
vector<vector<int>> matrix(n, vector<int>(n, 0)); //定义一个n * n的二维矩阵
迭代器
sort(nums.begin(), nums.end());
nums.begin()指向第一个元素, nums.end()指向最后一个元素的后一个元素.