离散化--uva12171 Sculpture

求一个雕塑的表面积和体积。

雕塑最多由50个立方体组成,总长宽高小于500 * 500 * 500。

立方体可能相互嵌套,或围成密闭空间,因此无法直接计算。

floodfill : 将雕塑放入一个500 * 500 * 500的空间内,求空气的联通块,该联通块的内表面积即为雕塑的表面积,500 * 500 * 500 - 联通块的体积即雕塑的体积。

问题1:500 * 500 * 500大于1e8,超内存,需要离散化。而最多50个立方体,一个坐标轴方向最多2个坐标,最多100个坐标。

问题2:空气的联通块可能较大,用dfs会溢出,应用bfs。


#include <iostream>

#include <cstdio>

#include <algorithm>

#include <cstring>

#include <queue>

using namespace std;


const int maxn = 50 + 5;

const int maxc = 1000 + 1;


//original data

int n,x0[maxn],y0[maxn],z0[maxn],x1[maxn],y1[maxn],z1[maxn];


//discretization data

int nx,ny,nz;

int xs[maxn * 2],ys[maxn * 2],zs[maxn * 2];


const int dx[] = {1,-1,0,0,0,0};

const int dy[] = {0,0,1,-1,0,0};

const int dz[] = {0,0,0,0,1,-1};

int mp[maxn * 2][maxn * 2][maxn * 2];


struct Cell{

    int x,y,z;

    Cell(int x = 0,int y = 0,int z = 0) : x(x),y(y),z(z) {}

    

    void setVis() const {

        mp[x][y][z] = 2;

    }

    int Volume() const {

        return (xs[x + 1] - xs[x]) * (ys[y + 1] - ys[y]) * (zs[z + 1] - zs[z]);

    }

    Cell neighbor(int dir) const {

        return Cell(x + dx[dir],y + dy[dir],z + dz[dir]);

    }

    bool valid() const {

        return x >= 0 && x < nx - 1 && y >= 0 && y < ny - 1 && z >= 0 && z < nz - 1;

    }

    bool solid() const {

        return mp[x][y][z] == 1;

    }

    int area(int dir) const {

        if(dx[dir] != 0) return (ys[y + 1] - ys[y]) * (zs[z + 1] - zs[z]);

        else if(dy[dir] != 0) return (xs[x + 1] - xs[x]) * (zs[z + 1] - zs[z]);

        else return (xs[x + 1] - xs[x]) * (ys[y + 1] - ys[y]);

    }

    bool getVis() const {

        return mp[x][y][z] == 2;

    }

};

void discretization(int xs[],int &nx)

{

    sort(xs,xs + nx);

    nx = unique(xs,xs + nx) - xs;

}

int ID(int x[],int sz,int x0)

{

    return lower_bound(x, x + sz, x0) - x;

}

void floodfill(int &v,int &s)

{

    v = 0,s = 0;

    Cell c;

    c.setVis();

    queue<Cell> q;

    q.push(c);

    while(!q.empty())

    {

        Cell c = q.front();q.pop();

        v += c.Volume();

        for (int i = 0; i < 6; i ++) {

            Cell c2 = c.neighbor(i);

            if (c2.valid()) {

                if (c2.solid() ) s += c.area(i);

                else if(!c2.getVis())

                {

                    c2.setVis();

                    q.push(c2);

                }

            }

            

        }

    }

    v = maxc * maxc * maxc - v;

}

int main()

{

    int T;

    scanf("%d",&T);

    while(T --)

    {

        nx = ny = nz = 2;

        xs[0] = ys[0] = zs[0] = 0;

        xs[1] = ys[1] = zs[1] = maxc;

        scanf("%d",&n);

        for (int i = 0; i < n; i ++) {

            scanf("%d%d%d%d%d%d",&x0[i],&y0[i],&z0[i],&x1[i],&y1[i],&z1[i]);

            x1[i] += x0[i];y1[i] += y0[i];z1[i] += z0[i];

            xs[nx ++] = x0[i];xs[nx ++] = x1[i];

            ys[ny ++] = y0[i];ys[ny ++] = y1[i];

            zs[nz ++] = z0[i];zs[nz ++] = z1[i];

        }

        discretization(xs, nx);

        discretization(ys, ny);

        discretization(zs, nz);

        

        memset(mp, 0, sizeof(mp));

        for (int i = 0; i < n; i ++) {

            int X1 = ID(xs,nx,x0[i]),X2 = ID(xs,nx,x1[i]);

            int Y1 = ID(ys,ny,y0[i]),Y2 = ID(ys,ny,y1[i]);

            int Z1 = ID(zs,nz,z0[i]),Z2 = ID(zs,nz,z1[i]);

            for (int X = X1; X < X2; X ++) {

                for (int Y = Y1; Y < Y2; Y ++) {

                    for (int Z = Z1; Z < Z2; Z ++) {

                        mp[X][Y][Z] = 1;

                    }

                }

            }

        }

        

        int v,s;

        floodfill(v,s);

        printf("%d %d\n",s,v);

    }

    return 0;

}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值