Ramsey定理--世界上任意6个人中,总有3个人相互认识,或互相皆不认识。

本文介绍了Ramsey数的基本概念,并通过实例证明了R(3,3)=6的情况,即在一个包含6人的群体中,要么能找到3人彼此认识,要么能找到3人彼此互不认识。文章进一步解释了Ramsey数的含义及其在数学中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大于等于6个人中,总有3个人相互认识,或互相皆不认识。

证明如下:首先,把这6个人设为A、B、C、D、E、F六个点。由A点可以引出AB、AC、AD、AE、AF五条 线段。设:如果两个人认识,则设这两个人组成的线段为红色;如果两个人不认识,则设这两个人组成的线段为蓝色。
抽屉原理可知:这五条线段中至少有三条是同色的。不妨设AB、AC、AD为红色。若BC或CD为红色,则结论显然成立。若BC和CD均为蓝色,则若BD为红色,则一定有三个人相互认识;若BD为蓝色,则一定有三个人互相不认识。

一对常数a和b,对应于一个整数r,使得r个人中或有a个人相互认识,或有b个人互不认识;或有a个人互不认识,或有b个人相互认识。这个数r的最小值用R(a,b)来表示,也就是R(a,b)个顶点的完全图。
虽然R(3,3)的证明十分巧妙,但是实际上已知的 Ramsey 数非常少,比如R(3,3)=6,R(3,4)=9,R(4,4)=18

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值