对于Lele来说,最痛苦的事莫过于早起看书了,不过为了考研,也就豁出去了。由于早起看书会对看书效率产生影响,所以对于要什么时候起床看书,还是有必要考虑的。
经过周密的调查,Lele发现早起的时间会对上午和下午的看书效率都产生影响,具体如下:
他把早起的程度标记为一个非负有理数X,X数值越大,表示越早起。
1.对上午的影响F:符合 F = N / (X^2) 。其中N是一个参数。即越早起床,对上午的效率影响越少。
2.对下午的影响Y:一般越早起,对下午的效率影响越大。不过Y和X的关系比较复杂,并且在不同时候关系也是不同的,于是Lele把它绘制成为函数图形了。在某天,函数图形如下。
X轴的值表示早起的程度,Y轴的值表示对下午看书效率的影响。函数图像为折线上升的。
不过由于N值和Y-X的图像并不确定,所以Lele每次都要进行大量工作,来确保对整天的看书效率影响最小(F+Y的值最小),现在就请你帮帮他吧。
记住早起时间的取值X一定要在折线包含的范围之内。(对于上面这个图象,X一定要在[0,20]之内)。
每组测试第一行包含两个整数M和N(1<M<10000,0<=N<=2^31)。其中M表示X-Y图像中顶点的数目。N含义见题目描述。
接下来有M行整数,分别表示这M个点在图像中的坐标Xi和Yi,Xi和Yi范围在[0,2^30]之内。
注意,第一个坐标一定为(0,0),并且X坐标和Y坐标是不降的,即对于任意 i<j Xi<Xj 且 Yi<=Yj。
而Lele早起的时间一定在[0,Xm-1]这个范围之内。
结果保留三位小数
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxm = 1e4 + 5;
double x[maxm],y[maxm];
const double eps = 1e-5;
int m;
double n;
double equ(double tx,int p)
{
if(x[p] == tx) return y[p] + n / (tx * tx);
return y[p - 1] + (y[p] - y[p - 1]) / (x[p] - x[p - 1]) * (tx - x[p - 1]) + n / (tx * tx);
}
void solve()
{
double l = 0.0,r = x[m - 1];
double lmid = 0,rmid = 0;
double ans1 = 0,ans2 = 0;
double ans = 1 << 30;
for(int i = 1;i < m;i ++)
{
l = x[i - 1],r = x[i];
while(r - l >= eps)
{
lmid = l + (r - l) / 3;
rmid = r - (r - l) / 3;
ans1 = equ(lmid,i);
ans2 = equ(rmid,i);
if(ans1 > ans2)
l = lmid;
else r = rmid;
}
ans = min(ans,equ((l + r) / 2,i));
}
printf("%.3lf\n",ans);
}
int main()
{
while(cin >> m >> n){
memset(x, 0, sizeof(x));
memset(y, 0, sizeof(y));
for (int i = 0; i < m; i ++) {
scanf("%lf%lf",&x[i],&y[i]);
}
solve();
}
return 0;
}