前缀和--BZOJ-4972 小Q的方格纸

小Q的方格纸有n行m列,一共n*m个方格,从上到下依次标记为第1,2,...,n行,从左到右依次标记为第1,2,...,m列,方便起见,小Q称第i行第j列的方格为(i,j)。小Q在方格纸中填满了数字,每个格子中都恰好有一个整数a_{i,j}。

小Q一共会给出q个询问,每次给定一个方格(x,y)和一个整数k(1<=k<=min(x,y)),你需要回答由(x,y),(x-k+1,y),(x,y-k+1)三个格子构成的三角形边上以及内部的所有格子的a的和。

将三角形化为梯形和矩形的和,差。

先用前缀和计算梯形、矩形的和即可。

ps:计算时注意f[a,b] = f[b] - f[a - 1]


#include <iostream>

#include <cstdio>

using namespace std;

const int maxn = 3000 + 5;

int mp[maxn][maxn];

int tra[maxn][maxn],rect[maxn][maxn];

int n,m,q;

unsigned A,B,C;

typedef long long ll;

const ll mod = (1ll << 32);

void cal()

{

    for(int i = 1;i <= n;i ++){

        for (int j = m; j >= 1 ; j --) {

            tra[i][j] = mp[i][j] + tra[i - 1][j + 1] + tra[i][j + 1] - tra[i - 1][j + 2];//梯形

            rect[i][j] = mp[i][j] + rect[i - 1][j] + rect[i][j + 1] - rect[i - 1][j + 1];//矩形

        }

    }

}

int solve(int x,int y,int k)

{

   return tra[x][y - k + 1] - tra[x - k][y + 1] - (rect[x][y + 1] - rect[x - k][y + 1]);

}

inline unsigned int rng61(){

    A ^= A << 16;

    A ^= A >> 5;

    A ^= A << 1;

    unsigned int t = A;

    A = B;

    B = C;

    C ^= t ^ A;

    return C;

}

int main()

{

    scanf("%d%d%d%u%u%u", &n, &m, &q, &A, &B, &C);

    for(int i = 1; i <= n; i++)

        for(int j = 1; j <= m; j++)

            mp[i][j] = rng61();

    cal();

    int x,y,k;

    ll sum = 0;

    for(int i = 1; i <= q; i++){

        x = rng61() % n + 1;

        y = rng61() % m + 1;

        k = rng61() % min(x, y) + 1;

        sum = (sum * 233 + solve(x, y, k)) % mod;

    }

    printf("%lld\n",(sum + mod) % mod);

    return 0;

}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值