题目
给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
插入一个字符
删除一个字符
替换一个字符
示例 1:
输入:word1 = "horse", word2 = "ros"
输出:3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')
示例 2:
输入:word1 = "intention", word2 = "execution"
输出:5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')
思路
动态规划
一、定义 dp[i][j]
dp[i][j]
代表 word1 中前i
个字符,变换到 word2 中前j
个字符,最短需要操作的次数- 需要考虑 word1 或 word2 一个字母都没有,即全增加/删除的情况,所以预留
dp[0][j]
和dp[i][0]
二、状态转移
- 增,
dp[i][j] = dp[i][j - 1] + 1
- 删,
dp[i][j] = dp[i - 1][j] + 1
- 改,
dp[i][j] = dp[i - 1][j - 1] + 1
- 按顺序计算,当计算
dp[i][j]
时,dp[i - 1][j]
,dp[i][j - 1]
,dp[i - 1][j - 1]
均已经确定了 - 配合增删改这三种操作,需要对应的 dp 把操作次数加一,取三种的最小
- 如果刚好这两个字母相同
word1[i - 1] = word2[j - 1]
,那么可以直接参考dp[i - 1][j - 1]
,操作不用加一
三、代码
class Solution {
public int minDistance(String word1, String word2) {
int m = word1.length();
int n = word2.length();
int[][] dp = new int[m+1][n+1];
for(int i=1; i<=n; i++){
dp[0][i] = i;
}
for(int j=1; j<=m; j++){
dp[j][0] = j;
}
for(int i=1; i<m+1; i++){
for(int j=1; j<n+1; j++){
dp[i][j] = Math.min(dp[i-1][j-1], Math.min(dp[i-1][j], dp[i][j-1]))+1;
if(word1.charAt(i-1) == word2.charAt(j-1)){
dp[i][j] = dp[i-1][j-1];
}
}
}
return dp[m][n];
}
}
参考链接
:https://leetcode-cn.com/problems/edit-distance/solution/edit-distance-by-ikaruga/