Leetcode 72. 编辑距离

题目

给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

插入一个字符
删除一个字符
替换一个字符

示例 1:

输入:word1 = "horse", word2 = "ros"
输出:3
解释:
horse -> rorse ('h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')

示例 2:

输入:word1 = "intention", word2 = "execution"
输出:5
解释:
intention -> inention (删除 't')
inention -> enention ('i' 替换为 'e')
enention -> exention ('n' 替换为 'x')
exention -> exection ('n' 替换为 'c')
exection -> execution (插入 'u')

思路

动态规划

一、定义 dp[i][j]

  1. dp[i][j] 代表 word1 中前 i 个字符,变换到 word2 中前 j 个字符,最短需要操作的次数
  2. 需要考虑 word1 或 word2 一个字母都没有,即全增加/删除的情况,所以预留 dp[0][j]dp[i][0]

二、状态转移

  1. 增,dp[i][j] = dp[i][j - 1] + 1
  2. 删,dp[i][j] = dp[i - 1][j] + 1
  3. 改,dp[i][j] = dp[i - 1][j - 1] + 1
  4. 按顺序计算,当计算 dp[i][j] 时,dp[i - 1][j]dp[i][j - 1]dp[i - 1][j - 1] 均已经确定了
  5. 配合增删改这三种操作,需要对应的 dp 把操作次数加一,取三种的最小
  6. 如果刚好这两个字母相同 word1[i - 1] = word2[j - 1] ,那么可以直接参考 dp[i - 1][j - 1] ,操作不用加一

三、代码

class Solution {
    public int minDistance(String word1, String word2) {
        int m = word1.length();
        int n = word2.length();
        int[][] dp = new int[m+1][n+1];
        for(int i=1; i<=n; i++){
            dp[0][i] = i;
        }
        for(int j=1; j<=m; j++){
            dp[j][0] = j;
        }
    
        for(int i=1; i<m+1; i++){
            for(int j=1; j<n+1; j++){
                dp[i][j] = Math.min(dp[i-1][j-1], Math.min(dp[i-1][j], dp[i][j-1]))+1;
                if(word1.charAt(i-1) == word2.charAt(j-1)){
                    dp[i][j] = dp[i-1][j-1];
                }
            }
        }

        return dp[m][n];
    }
}

参考链接
:https://leetcode-cn.com/problems/edit-distance/solution/edit-distance-by-ikaruga/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>