55.Jump Game
题目描述:
给定一个非负整数数组,你最初位于数组的第一个位置。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个位置。
示例 1:
输入: [2,3,1,1,4]
输出: true
解释: 我们可以先跳 1 步,从位置 0 到达 位置 1, 然后再从位置 1 跳 3 步到达最后一个位置。
示例 2:
输入: [3,2,1,0,4]
输出: false
解释: 无论怎样,你总会到达索引为 3 的位置。但该位置的最大跳跃长度是 0 , 所以你永远不可能到达最后一个位置。
思路:(贪心)–时间O(n),空间O(1)
遍历数组,记录能跳到的最大index:max_jump=max(i+nums[i],max_jump);
//为什么要取最大值
//例如:[2,0,3,0],从2可以跳到3,但是从0就只能跳到原地(并不代表就此返回false)
- 若max_jump<i,即连第i个位置都跳不到,谈何跳到尾部?
- 若max_jump>=n-1,即可以从当前位置直接跳到尾部,可提前返回true
class Solution {
public:
bool canJump(vector<int>& nums) {
if(nums.size()==1) return true;
int n=nums.size();
int max_jump=0;//最大跳到此index
for(int i=0;i<n-1;++i){
if(i>max_jump){//跳不到第i个,谈何跳到尾部?直接false
return false;
}
//更新max_jump
max_jump=max(i+nums[i],max_jump);
if(max_jump>=n-1){//能跳到尾元素,直接true
return true;
}
}
return false;
}
};
45.Jump Game II
题目描述:
如上题
假设总是可以跳跃到数组尾部。求出跳跃到尾部所需最小跳跃数。
示例:
输入: [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是 2。
从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。
思路:(贪心)–时间O(n),空间O(1)
顺着上题思路。max_jump记录所能跳跃到的最大index。
新增一个边界boundary,记录当前所能跳到的边界(最大index);
当i==boundary时,更新boundary。
(每次在可跳范围内选择可以使得跳的更远的位置,即boundary=max_jump
)
从2开始跳,橙色表示能跳的范围,3能跳到更远,因此当i遍历到1(边界)时,
更新boundary=max_jump//3所在的index
从3开始跳,橙色表示能跳的范围,4能跳到更远,因此当i遍历到4(边界)时,
更新boundary=max_jump//4所在的index
class Solution {
public:
int jump(vector<int>& nums) {
int n=nums.size();
int max_jump=0;//最大跳到此index
int boundary=0;//上一步所能到达的边界(最大index)
int cnt=0;
for(int i=0;i<n-1;++i){
//更新max_jump
max_jump=max(i+nums[i],max_jump);
if(i==boundary){//i到达上一步到达的边界,更新边界
boundary=max_jump;
++cnt;
}
}
return cnt;
}
};