利用CNN卷积神经网络实现车牌识别(tensorflow)附完整Python项目代码

 先上效果图

车牌识别的几个步骤:
给一张图片
1.从图片上找到车牌的区域
2.从图片上截取车牌的区域
3.从这个车牌区域中分割出一个一个的字符图片,保存
4.字符图片挨个识别:先识别省份,再识别城市、再识别号码
5.三个部分合在一起,得到最终的车牌的详细信息

怎么去识别: 用模型去做 模型=数据(特征数据+标签数据)+算法 (CNN)卷积神经网络 
tensorflow:数据流编程 平台的工作方式:数据流图
1.创建图
2.给图中添加需要的模块
3.带入数据 进行计算 让数据在图中流动起来

图像识别的流程: 使用卷积神经网络来做
1.特征提取
2.主要特征提取
3.主要特征汇总
4.分类汇总 预测属于哪一个类别(得到的都是概率)

构建模型代码段:opencv.py

   初始化参数

WIDTH=32 #设置图片的宽和高
HEIGHT=40
IMAGESIZE=1280 #32*40
interations=40 #训练次数
#2.给你的图片本应该是什么类别的 经过计算之后得出的结论是什么 该图片属于各种类别的概率 概率最大的就是识别出的类
NUM_CLASSES=34  #一张图片的分类可能是34种中的一种 最后要得出每一种的概率

#要识别的车牌号码的集合 34类输出
LETTER_NUM=('0','1','2','3','4','5','6','7','8','9',
            'A','B','C','D','E','F','G','H','J','K','L','M',
            'N','P','Q','R','S','T','U','V','W','X','Y','Z')

输入层

#输入层:保存图片的信息 需要保存的地方 ---占位符
#x存特征数据   y存标签数据
x=tf.placeholder(tf.float32,shape=[None,IMAGESIZE]) #创建一个占位符 Shape第一个参数表示图片的数量(None表示多少张图片都可以 不做限制) 第二个参数是size
y=tf.placeholder(tf.float32,shape=[None,NUM_CLASSES]) #标签,规定了标签的数量

#修改一个图片的形状 保证每一张图片都是32*40
x_imgs=tf.reshape(x,[-1,WIDTH,HEIGHT,1]) #最后的1表示单通道 (灰度图) -1表示不限制有多少张图片 但是对宽度高度和单通道做了限制

特征提取 

#小部分每一个值的权重(tf.Variable()创建变量)
W_con1=tf.Variable(tf.random_normal([8,8,1,16],stddev=0.1),name='W_con1')  #小区域8*8,单通道深度为1,将深度从1变成16 stddev=0.1设置标准差 生成的随机数不会相差太大

#偏置
b_con1=tf.Variable(tf.constant(0.1,shape=[16]),name='b_con1') #生成16个偏置 值都为0.1 #设置的偏置个数需要和输出的深度一致

#图片初始大小32*40*1
#卷积操作(区域乘以小区域对应的权重)
jj_con1=tf.nn.conv2d(x_imgs,W_con1,strides=[1,1,1,1],padding="SAME") #strides第1和第4个参数固定 第2个参数是水平步长 第3个参数是垂直步长 SAME表示图片的大小不发生变化(32*40)

#激活函数
#把小于0的值用0替代 relu(0,x)取0和这个数的较大一方 【已经把小于0的那些无用内容剔除了---去除无效特征】 激活函数
jh_con1=tf.nn.relu(jj_con1+b_con1) #乘对应的权重并加上偏置后 relu把小于0的值用0替代

#池化
#主要特征提取---提取(均值 最大值)(一般都是2*2的区域) 取区域中的最大值 进行池化
ch_con1=tf.nn.max_pool(jh_con1,ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME") #区域是2*2 移动步长也需要设置为2,2(水平步长和垂直步长)

#池化后图片的大小变为 (16*20)*16 在W_con1=tf.Variable()中将tf.random_normal的深度从1设置到16 因为池化区域和池化步长为(2 2) 所以相应的从32*40-》16*20

再做一次卷积池化

#做第二次 第一次输出的深度是16 这次将深度从16变为32 且区域变为5*5
W_con2=tf.Variable(tf.random_normal([5,5,16,32],stddev=0.1),name='W_con1')
b_con2=tf.Variable(tf.constant(0.1,shape=[32]),name='b_con2') #生成32个偏置【shape与输出的深度要同步】值都为0.1
jj_con2=tf.nn.conv2d(ch_con1,W_con2,strides=[1,1,1,1],padding="SAME") #第一次的输出和第二次的权重进行卷积操作
jh_con2=tf.nn.relu(jj_con2+b_con2) #乘对应的权重并加上偏置后 relu把小于0的值用0替代
ch_con2=tf.nn.max_pool(jh_con2,ksize=[1,1,1,1],strides=[1,1,1,1],padding="SAME") #这里将池化大小从2*2变成1*1(图片大小与池化区域大小有关)
#图片的大小变为(16*20)*32

 全连接层

#图片数据转成1行 转为一维 从16*20*32转到512 这是全连接层?
W_fc1=tf.Variable(tf.random_normal([16*20*32,512],stddev=0.1),name="W_fc1") #权重
b_fc1=tf.Variable(tf.constant(0.1,shape=[512]),name="b_fc1") #生成偏置 512个0.1
h_fc1_flat=tf.reshape(ch_con2,[-1,16*20*32]) #特征值 [-1,16*20*32] -1表示不管有多少张图片 但是每张图片大小要保证16*20*32
#采用 权重*特征值+偏置的 然后取最大值
h_fc1=tf.nn.relu(tf.matmul(h_fc1_flat,W_fc1)+b_fc1) #matmuL()注意要把权重放在右边

 删除部分神经元

#删除部分神经元---剩余多少神经元参与工作
keep_prob=tf.placeholder(tf.float32) #删除神经元的个数
h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob)

 输出分类

#输出--分类 有NUM_CLASS个类
W_fc2=tf.Variable(tf.random_normal([512,NUM_CLASSES],stddev=0.1),name="W_fc2") #权重
b_fc2=tf.Variable(tf.constant(0.1,shape=[NUM_CLASSES]),name="b_fc2") #生成偏置
#直接计算结果
y_con=tf.matmul(h_fc1_drop,W_fc2)+b_fc2

计算误差和精确率 


#网络搭建完成 接下来我们计算真实结果和识别出来结果的差距
#softmax_cross_entropy_with_logits 用来计算真实结果y和识别出来结果y_con的交叉熵
#reduce_mean 求均值 用均值来表示他们之间的差距
cross=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=y_con))

#要让差距越来越小 AdamOptimizer 优化器 获得最小的cross
train_step=tf.train.AdamOptimizer(1e-4).minimize(cross) #AdamOptimizer设置了学习率

#只能看到损失值 不方便我们观察准确率
#准确率怎么表示---图片属于哪个分类 找最大值对应的下标 下标是几 就属于哪个分类
#tf.argmax(input,axis)根据axis取值的不同返回每行或者每列最大值的索引
#equal:bool类型的真和假 通过argmax其实就是从数组中挑出概率取到最大值的下标
#例:【20,15,30,40】 下标为3概率取到最大值 两者进行对比就可以判断预测值和真实值是否相同
"""
例:
A = [[1,3,4,5,6]]
B = [[1,3,4,3,2]]
输出:[[ True True True False False]] 转为float32后这里就可以求出均值了 均值即表示准确率
"""
correct=tf.equal(tf.argmax(y_con,1),tf.argmax(y,1))
#把bool类型转成数字类型 tf.cast进行数据类型的转换
accuracy=tf.reduce_mean(tf.cast(correct,tf.float32)) #准确率

读取图片 

下面这段是直接拿来的

#读取图片的函数
#这个函数的作用就是把读取到的每一张图片:图片特征数据和图片属于哪一个分类(标签数据)整合再一起 为模型训练准备好完整的数据集!


def picRead_pre():
    input_count = 0
    for i in range(0, NUM_CLASSES):
        dir = './train_images/training-set/%s/' % str(i)  # 这里可以改成你自己的图片目录,i为分类标签
        for rt, dirs, files in os.walk(dir):
            for filename in files:
                input_count += 1

    # 定义对应维数和各维长度的数组
    # input_images特征数据
    input_images = np.array([[0] * IMAGESIZE for i in range(input_count)])
    # 标签数据:
    input_labels = np.array([[0] * NUM_CLASSES for i in range(input_count)])

    # 第二次遍历图片目录是为了生成图片数据和标签
    index = 0
    for i in range(0, NUM_CLASSES):
        dir = './train_images/training-set/%s/' % str(i)  # 这里可以改成你自己的图片目录,i为分类标签
        for rt, dirs, files in os.walk(dir):
            for filename in files:
                filename = dir + filename
                img = Image.open(filename)
                width = img.size[0]
                height = img.size[1]
                for h in range(0, height):
                    for w in range(0, width):
                        # 通过这样的处理,使数字的线条变细,有利于提高识别准确率
                        if img.getpixel((w, h)) > 230:
                            input_images[index][w + h * width] = 0
                        else:
                            input_images[index][w + h * width] = 1
                input_labels[index][i] = 1
                index += 1

    # 第一次遍历图片目录是为了获取图片总数
    val_count = 0
    for i in range(0, NUM_CLASSES):
        dir = './train_images/training-set/%s/' % str(i)  # 这里可以改成你自己的图片目录,i为分类标签
        for rt, dirs, files in os.walk(dir):
            for filename in files:
                val_count += 1

    # 定义对应维数和各维长度的数组
    val_images = np.array([[0] * IMAGESIZE for i in range(val_count)])
    val_labels = np.array([[0] * NUM_CLASSES for i in range(val_count)])

    # 第二次遍历图片目录是为了生成图片数据和标签
    index = 0
    for i in range(0, NUM_CLASSES):
        dir = './train_images/training-set/%s/' % str(i)  # 这里可以改成你自己的图片目录,i为分类标签
        for rt, dirs, files in os.walk(dir):
            for filename in files:
                filename = dir + filename

                img=Image.open(filename)
                width = img.size[0]
                height = img.size[1]
                for h in range(0, height):
                    for w in range(0, width):
                        # 通过这样的处理,使数字的线条变细,有利于提高识别准确率
                        if img.getpixel((w, h)) > 230:
                            val_images[index][w + h * width] = 0
                        else:
                            val_images[index][w + h * width] = 1
                val_labels[index][i] = 1
                index += 1
    # 返回图片的特征数据,标签数据以及图片张数
    return input_images, input_labels, input_count, val_images, val_labels, val_count

 模型的训练与保存


#启动图 把数据带入 让数据在图中流动
#怎么启动图:
with tf.Session() as sess: #Session提供了Operation执行和Tensor求值的环境;
    #怎么执行初始化
    sess.run(init)
    # 要训练 需要数据--大量的图片数据 需要读取每一张图片
    input_images, input_labels, input_count, val_images, val_labels, val_count=picRead_pre()
    # input_images:x 输入, input_labels:y 输出, input_count 数据总数
    #开始训练 不要一下子全部给他 只给一部分 分块给他
    #每一次给60张图片 input_count表示图片的总数
    batch_size=60 #分组大小设置为60
    batches_count=int(input_count/batch_size) #分组的数量
    res=input_count%batch_size #最后一次训练 使用剩余图片

    #训练次数:100次
    for i in range(interations): #训练次数
        for n in range(batches_count): #一次完整的图片全部训练需要做几次
            #怎么把数据带入图中 [0,60) [60,120) 每次喂入一组数据
            sess.run(train_step,feed_dict={x:input_images[n*batch_size:(n+1)*batch_size],
                                           y:input_labels[n*batch_size:(n+1)*batch_size],
                                           keep_prob:0.5}) #只给一半的神经元
        if res>0: #如果图片剩余
            start_index=batches_count*batch_size #整数组的最后一个为hi
            sess.run(train_step,feed_dict={x:input_images[start_index:input_count-1],
                                           y:input_labels[start_index:input_count-1],
                                           keep_prob:0.5})

        #每做五次 打印一次结果
        if i%1==0:
            #得到准确率
            accry=sess.run(accuracy,feed_dict={x:val_images,
                                               y:val_labels,
                                               keep_prob:1.0}) #给全部的神经元

            print("第 %d 次训练 准确率为 %0.5f%%"%(i,accry*100))

    print("训练完成")

    #模型的保存
    saver=tf.train.Saver()
    saver.save(sess,"./model/letter_digits_model.ckpt")

    #模型保存完了 怎么使用呢
    #加载模型 首先必须构建一个一模一样的网络

加载模型代码段:loadCNN.py

前面的部分都和构建模型一样 

#使用模型
#1.构建一模一样的网络
#2.启动图
#3.读取一张图片进行预测
#4.将图片数据存储到img_data中
#5.把数据带入计算结果

#模型使用的流程:1.构建模型 2.训练模型 3.保存模型 4.加载模型(构建一个一模一样的模型) 5.给图片进行预测 6.结果对比
import os
import numpy as np
import tensorflow as tf
from PIL import Image

def load_digitModel():
    WIDTH=32
    HEIGHT=40
    IMAGESIZE=1280 #32*40

    #2.给你的图片本应该是什么类别的 经过计算之后得出的结论是什么 该图片属于各种类别的概率 概率最大的就是识别出的类
    NUM_CLASSES=34  #一张图片的分类可能是34种中的一种 最后要得出每一种的概率

    #要识别的车牌号码的集合 34类输出
    LETTER_NUM=('0','1','2','3','4','5','6','7','8','9',
                'A','B','C','D','E','F','G','H','J','K','L','M',
                'N','P','Q','R','S','T','U','V','W','X','Y','Z')

    #输入层:保存图片的信息 需要保存的地方 ---占位符
    #x存特征数据   y存标签数据
    x=tf.placeholder(tf.float32,shape=[None,IMAGESIZE]) #创建一个占位符 Shape第一个参数表示图片的数量(None表示多少张图片都可以 不做限制) 第二个参数是size
    y=tf.placeholder(tf.float32,shape=[None,NUM_CLASSES]) #标签,规定了标签的数量

    #修改一个图片的形状 保证每一张图片都是32*40
    x_imgs=tf.reshape(x,[-1,WIDTH,HEIGHT,1]) #最后的1表示单通道 (灰度图) -1表示不限制有多少张图片 但是对宽度高度和单通道做了限制

    #特征提取:卷积层实现--提取图像中每一个小部分的特征 自己约定 暂时定为8*8
    #小部分每一个值的权重(tf.Variable()创建变量)
    W_con1=tf.Variable(tf.random_normal([8,8,1,16],stddev=0.1),name='W_con1')  #小区域8*8,单通道深度为1,将深度从1变成16 stddev=0.1设置标准差 生成的随机数不会相差太大

    #偏置
    b_con1=tf.Variable(tf.constant(0.1,shape=[16]),name='b_con1') #生成16个偏置 值都为0.1 #设置的偏置个数需要和输出的深度一致

    #图片初始大小32*40*1
    #卷积操作(区域乘以小区域对应的权重)
    jj_con1=tf.nn.conv2d(x_imgs,W_con1,strides=[1,1,1,1],padding="SAME") #strides第1和第4个参数固定 第2个参数是水平步长 第3个参数是垂直步长 SAME表示图片的大小不发生变化(32*40)

    #激活函数
    #把小于0的值用0替代 relu(0,x)取0和这个数的较大一方 【已经把小于0的那些无用内容剔除了---去除无效特征】 激活函数
    jh_con1=tf.nn.relu(jj_con1+b_con1) #乘对应的权重并加上偏置后 relu把小于0的值用0替代

    #池化
    #主要特征提取---提取(均值 最大值)(一般都是2*2的区域) 取区域中的最大值 进行池化
    ch_con1=tf.nn.max_pool(jh_con1,ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME") #区域是2*2 移动步长也需要设置为2,2(水平步长和垂直步长)

    #池化后图片的大小变为 (16*20)*16 在W_con1=tf.Variable()中将tf.random_normal的深度从1设置到16 因为池化区域和池化步长为(2 2) 所以相应的从32*40-》16*20


    #做第二次 第一次输出的深度是16 这次将深度从16变为32 且区域变为5*5
    W_con2=tf.Variable(tf.random_normal([5,5,16,32],stddev=0.1),name='W_con1')
    b_con2=tf.Variable(tf.constant(0.1,shape=[32]),name='b_con2') #生成32个偏置【shape与输出的深度要同步】值都为0.1
    jj_con2=tf.nn.conv2d(ch_con1,W_con2,strides=[1,1,1,1],padding="SAME") #第一次的输出和第二次的权重进行卷积操作
    jh_con2=tf.nn.relu(jj_con2+b_con2) #乘对应的权重并加上偏置后 relu把小于0的值用0替代
    ch_con2=tf.nn.max_pool(jh_con2,ksize=[1,1,1,1],strides=[1,1,1,1],padding="SAME") #这里将池化大小从2*2变成1*1(图片大小与池化区域大小有关)
    #图片的大小变为(16*20)*32


    #图片数据转成1行 转为一维 从16*20*32转到512 这是全连接层?
    W_fc1=tf.Variable(tf.random_normal([16*20*32,512],stddev=0.1),name="W_fc1") #权重
    b_fc1=tf.Variable(tf.constant(0.1,shape=[512]),name="b_fc1") #生成偏置 512个0.1
    h_fc1_flat=tf.reshape(ch_con2,[-1,16*20*32]) #特征值 [-1,16*20*32] -1表示不管有多少张图片 但是每张图片大小要保证16*20*32
    #采用 权重*特征值+偏置的 然后取最大值
    h_fc1=tf.nn.relu(tf.matmul(h_fc1_flat,W_fc1)+b_fc1) #matmuL()注意要把权重放在右边

    #删除部分神经元---剩余多少神经元参与工作
    keep_prob=tf.placeholder(tf.float32) #删除神经元的个数
    h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob)

    #输出--分类 有NUM_CLASS个类
    W_fc2=tf.Variable(tf.random_normal([512,NUM_CLASSES],stddev=0.1),name="W_fc2") #权重
    b_fc2=tf.Variable(tf.constant(0.1,shape=[NUM_CLASSES]),name="b_fc2") #生成偏置
    #直接计算结果
    y_con=tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)

在with tf.Session()中加载保存好的模型


    init=tf.global_variables_initializer()  #变量初始化

    with tf.Session() as sess:
        sess.run(init)
        #加载保存好的模型
        saver=tf.train.Saver()
        saver.restore(sess,"./model/letter_digits_model.ckpt")

        #开始使用模型进行预测
        #给图片--读图片
        licence_num="" #用于拼接车牌号码
        for i in range(3,8): #这里是根据车牌分割之后 result文件夹下面的图片来读取的
            path="./result/imgs%d.jpg"%(i) #%d
            img=Image.open(path)

            width=img.size[0]
            height=img.size[1]

            #创建一个空的二维数组 保存图片中的相关信息(图片宽度和高度的信息)
            img_data=[[0]*IMAGESIZE for i in range(1)]

            for h in range(0,height):
                for w in range(0,width):
                    #图片是黑白的 因此对像素点进行拆分 将拆分的结果表示成1和0两种情况
                    if img.getpixel((w,h))<190: #获取对应宽度和高度的像素点的值
                        img_data[0][w+h*width] =1 #w+h*width 当前行前面的h*width 再加上w 就指向了对应的位置
                    else:
                        img_data[0][w + h * width] = 0

            #先通过numpy进行数据类型的转化
            result=sess.run(y_con,feed_dict={x:np.array(img_data),keep_prob:1.0})
            #print(result,type(result)) #得到的是一大串的数据 34个结果相应的概率值
            #获取获取最大值的下标
            max=0
            max_index=0
            for j in range(NUM_CLASSES):
                if result[0][j]>max: #[[]] 被嵌套了 所以先用[0]取一下
                    max=result[0][j]
                    max_index=j
            #把每一张图片识别出来的数符加到末尾
            licence_num=licence_num+LETTER_NUM[max_index] #把各个字母数字拼接起来
        print("车牌号码:%s"%licence_num)
    return licence_num

其它相关的代码可以参考专栏中的其它博客 动手能力强的同学可以把专栏中的代码结合一下自己实现!

当然都懂大家想走捷径的心哈哈哈哈 完整的项目工程文件可以私信我 一杯奶茶的钱(15r) 大家少走些弯路 希望大家都可以快速完成自己的项目!(应付作业 狗头) 

注意:项目仅供学习 不接受毕设或作业代做 如果您觉得项目本身有参考价值 可以根据需要进行修改融入自己的项目中 最后希望大家都有所进步!

平时csdn的推送消息会被淹(日常收不到消息推送呜呜呜...),可以在私信我的同时用邮箱call我一下(yangsober@163.com

(项目安装包)

(项目文件)

(车牌识别界面)

(使用上述AI车牌识别按钮需要将AIDeal.py文件修改问自己的百度API,可以参照我主页的另一篇博客 也可以直接使用车牌号码识别按钮调用已经训练好的模型)

百度智能云的使用——以人脸识别为例_SOBE_rrr的博客-CSDN博客_百度智能云人脸识别

(项目文件中还包含当时写的一些其它UI 可以自己取舍)

 (当时写着玩的人脸识别与颜值打分系统也留在文件里 )(手动狗头) 需要把这里换成自己的百度API

项目入口(MainWin.py)

登录密码自行设置哦 

(还可以提供简单的项目答疑哦)

### 回答1: CNN卷积神经网络车牌识别模型是一种基于深度学习的技术,用于自动识别车牌上的字符和数字。该模型通过训练大量的车牌图像数据,学习提取车牌上的特征,然后通过分类算法判断每个字符或数字的类别,从而实现车牌识别。 为了进行CNN车牌识别模型的测试,我们需要一些测试数据集。这些数据集包含各种车牌类型和不同场景下的图片,例如白天、夜间、倾斜、模糊等。这些数据集有助于评估模型在各种情况下的准确性和鲁棒性。 在实际测试中,我们首先将测试数据输入到CNN车牌识别模型中。模型将会对输入图像进行预处理,例如调整大小、转换颜色空间等。然后,模型会提取图像中的特征,并对每个字符或数字进行分类。最后,模型将输出预测结果,即车牌识别结果。 为了评估模型的性能,我们可以使用指标如准确率、召回率和F1分数。准确率是模型正确预测的字符或数字占所有测试样本的比例,召回率是正确预测的字符或数字占所有实际字符或数字的比例。F1分数是综合考虑准确率和召回率的衡量指标。 通过对测试数据集进行测试,我们可以得出模型在不同情况下的性能表现。如果模型在大多数测试样本上具有较高的准确率和召回率,可以认为该模型具有较好的车牌识别性能。如果模型在某些特殊情况下表现不佳,我们可以进一步优化模型的架构和训练过程,以提高其性能。 总之,CNN车牌识别模型加上测试是一种有效的车辆自动化识别技术。通过建立合适的模型和测试数据集,我们可以评估和改进模型的性能,进一步提升车牌识别的准确性和可靠性。 ### 回答2: CNN车牌识别模型是一种利用卷积神经网络进行车牌识别的模型。卷积神经网络CNN)是一种深度学习模型,可以在计算机视觉任务中取得出色的性能。 要进行车牌识别模型的测试,我们首先需要收集一批包含不同种类车牌的图片数据作为训练集。这些训练样本需要包含车牌号码清晰可见的图片。然后,我们将这些图片输入到CNN模型中进行训练。在训练的过程中,CNN会学习车牌号码的特征和模式。 训练完成后,我们需要对测试集进行测试以评估模型的准确性。测试集应该包含与训练集类似的图片。我们将测试集中的图片输入到已训练好的CNN模型中,模型会给出对应的车牌号码的预测结果。 在车牌识别模型的测试中,我们可以使用准确率和召回率这两个指标来评估模型的性能。准确率表示预测正确的车牌号码所占的比例,而召回率则表示模型正确识别出的车牌号码所占的比例。 为了提高模型的准确性,我们还可以使用数据增强的方法,例如旋转、翻转、光照变化等操作来扩充训练集的大小,增加模型的泛化能力。 总而言之,CNN车牌识别模型加测试是一个通过卷积神经网络进行车牌识别,并通过测试集进行准确性评估的过程。这种模型可以应用于交通管理、车辆追踪等领域,提高效率和准确性。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值