怎么会有离散数学这么折磨人的一科
今天又是上了一节离散数学课,主播也是成功的什么也没听懂,因此决定产出一篇博客,这就是这篇博客出现的原因了
主播感觉只有在写一些东西的时候脑子才是更清醒一点的,所以主波对写博客这种事有一种蜜汁兴趣,控制不住强烈的想要写博客的冲动,也可能是因为主波之前天天写日记的原因吧,反正主波对于写东西有一种蜜汁热情
煮波决定写一篇离散数学的复习小作文
离散数学已经讲到了第五章了,离散数学怎么会出现图这种东西???布施说好的数学呢?刚开始学离散数学的时候就觉着这个玩意儿挺抽象的,结果学着学着都给我干哪来了???好好好,看在煮波好歹还是个学计算只因的,煮波就不和你计较了,你拿图来搞我就别怪煮波拿出上课的PPT把你反复看透了,不管了,开干!
首先无向图就是由顶点集和无向边集构成的集合,顶点的个数就叫做图的阶,d(v)是一个顶点关联的边的条数,称为度,悬挂点就是度为1的点,好家伙原来PPT上一开个头就给我说了这是个什么玩意,我说上课怎么连听都没听过,煮波还是受不了这个大学上课的阴间PPT模式,有效信息极少且啥也学不明白,当然也不排除可能还是煮波太菜了上课根本做不到认真听讲,煮波唯一的学习方式就是下课自学了,比如现在,主播是一个i人,上课根本链接不了老师一点,一般这种高思考量的课都是神游课了,今天上午的离散数学一遍神游一遍刷tb,是的,刷tb,好几个不注意之后就已经什么也跟不上了,煮波还不喜欢按照正常的方式上课,总觉着老师讲课煮波听课这种样子就很没意思,煮波一直觉得煮波自己有种奇怪的反叛精神,也说不清好坏的,反正有时候觉着这样还挺有意思的,不包括现在(),煮波还是要继续给煮波自己欠下的账自己还清了
很多时候学这种东西就不能死揪着细节或者死板的严格定义,主要还是靠直觉和练习训练出来的第一反应,主要还是要相信自己的直觉,然后再多一点奇思妙想的想象力,
握手定理
这里产出了一个上午上课没听懂的知识点,这个定理就是说在一个无向图中的边数一定是定点数的2倍,不是,错了,睁眼说瞎话呢怎么,这个定理是在描述顶点的度和图中的边数之间的关系,在一个无向图中顶点的度的和一定是边数的二倍,**推论·**图中奇点的个数一定是偶数个,因为偶数个奇数加起来才是偶数,
点子集的度
简单理解就是图的顶点中的一部分拿出来做成一个点集,然后这个点集里面的点临接的边中,不在该子集内部相连的边的数量,因为一个点的度就是和这个点相连的边的条数,同理一个子集的点连出去的边的条数就是这个点子集的度了
这会煮波已经因为要上水课辗转好几个教室了,煮波还是无法理解大学为什么会有水课这种东西,煮波觉得上大学水课就是浪费大学生生命的最佳方法
煮波现在找到了一间空无四人的教室,是的,教室里有算上煮波三个人,煮波终于可以自己安静的待一会了,煮波觉得自己又行了,果然认真做自己想做的事情什么的还是最美好了,煮波今天还想写一篇算法博客,但是同时想的还有机器学习,今晚还有数模要开始了,煮波觉得应该先学一下机器学习吧,而且不能很没规划,总是说着学机器学习,但是到现在除了上课要求学的东西其他的一点也还没往深处学,所以煮波也查了一下能学些什么,现在想的是先写完波士顿房价预测的多元线性回归的算法博客,再学一下支持向量机,加上神经网络,在这一周内完成,然后日常的算法学习如果看来是学不了太快的话,就两天内写完一篇算法博客,相当于两天才做一道题,这个量其实很少了,打acm的那些同学一天可能就要刷上十多道题了,不过那也得是已经会的前提下吧,之前学高中学算法的时候老师还经常安慰我们说只要是能学的明白,能学会学懂,一上午哪怕就写一道题也是很值的,因为已经学懂了,考虑到自己在大学这种特殊性,虽然每天学习的效率并不能说很高,但是如果能两天甚至每天都能新学一个算法的话,长时间累积起来,仅仅只需要两三个月下去,那我积累的知识也一定会相当多了,先试一下两天学一个算法可不可行,反正宏观来看时间还很长,如果两天就能学完一个算法,那就坚持下去,如果两天还学不完,那就三天学一个,如果还能学的更快,那就近乎疯狂的一天就能学一个,总之坚持下去,看一下自己每天都做了什么,其实做的事情并不算太多,相对于互联网这个神奇的地方来说的话,可能有的人在这个阶段就已经发上论文,搞起科研,之类的了,但是那种东西离我太遥远了,而且就像镜花水月,根本看不真切,我也不想也没必要去担心这些问题,一味的比较是没有终止的,所以我只需要专注于我要做的事情和我可以做的事情就可以了,所以请保持坚定,也通过这种方式让自己保持思考,保持清醒,大部分人都是保持现状而不会有什么进步的,然后你需要做的只是投入一定量的精力,在一个领域坚持长时间做下去…好了,上压力和灌鸡汤到此为止了总之,做一点事情,还有坚持读书。
- 完全图的边数: 上面只说过无向图了,完全图又是个啥?
(对了煮波为了码子舒服又买了一个机械键盘),完全图就是一种特殊的无向图,要求任意两个节点都是有且仅有一条边相连通的,任意两点都相连,每个点都连接着n-1个点,有n-1条边,n-1的度,一个p阶完全图有p个节点,每个节点有p-1条边,一共有p(p-1)条边?可恶,又错了,一个节点确实有n-1条边,但是边的另一侧的那个节点在计算的时候又是重复把这一条边计算了一次,相当于每一条边被计算了两次,得到的总数应该除以二才是实际的边数,上面的那个统计度和边数之间的关系的也是这个意思,因为无向图里面度就是边,度的和是边数的二倍就是这个意思了,哦,回去翻了一下这个玩意叫什么握手定理,净整些奇奇怪怪的,你叫它握手原理这谁能记得住啊,而且我这在刚才用到这种思路的时候我能先联想到握手再取用你这原理吗,显然是不能啊,我是自己在用的时候先用到这个东西是什么了,回过头来一看才知道这玩意交什么握手原理,哪里握手了,数学你赢了,你真是天天让我难绷 - 完全二部图 K m , n K_{m,n} Km,n的边数 不是我真是又受不了了,完全二部图是个什么我学了吗,怎么一上来就让我做题啊??我都没学过你让我做什么题啊??回答我! 就这么折磨我是吧,好好好,离散数学你又赢了,我学还不行吗,完全二部图参照完全图,首先是二部图,然后满足“完全”的含义。是指二部图中两个点集之间任意两点均相连,这两个点集满足没有交点,点集内部没有连边。计算边数:一点集中任一点到另一点集均有边,共有m个点,故有m*n条边
现在追求一下语言的简练吧,同时还是梳理思路
-
**一组内有p个人,每个人有三个朋友,判断p的奇偶:**握手定理,3p=2V,则p为偶数
-
简单图中悬挂边关联的顶点一个是悬挂点: 简单图的定义:图中没有自环,没有重边的图;悬挂边一段必然是一个悬挂点,这个毫无疑问,另一个则不确定了
-
K p K_p Kp的边数: 1 2 p × ( p − 1 ) \dfrac{1}{2}p\times (p-1) 21p×(p−1)
-
证明在 G ( p , q ) 中 δ ( G ) < = 2 q / p < = Δ ( G ) G(p,q)中\delta(G) <=2q/p<=\Delta(G) G(p,q)中δ(G)<=2q/p<=Δ(G):
小写的δ(G)是指图中最小的度,大写的δ(G)是指图中最大的度,根据握手定理,无向图中所有顶点的度数之和是2q,那么2q/p就是把度数平均分摊到所有顶点上,那么度的平均值就是介于最小值和最大值之间的
r度正则图
图中的度的最小值和最大值都是r,也就是每个节点的度都是r,就称为r度正则图
完全图就是p-1度正则图,因为每个节点都与其他所有节点相连,每个节点的度都是p-1,但r度正则图不是完全图
子图、生成子图、真子图
图的点集和边集都是原图的子集,那么这个图就是一个子图
图的点集和原图的点集相等,边集是原图的边集,那这个图就是生成子图,生成子图对边集不做要求,边集和原图相同时,称为平凡生成子图,
图的点集和边集至少有一个是原图的真子集,那么这个图成为原图的真子图,所以部分的生成子图是真子图
下面来说图的连通性
图的边连通度
为了产生一个不连通图或者平凡图(只有一个节点的图),需要从图中删去的最小边数,用符号 λ ( G ) \lambda(G) λ(G)表示
- 不连通图和平凡图的边连通度都是零(零图是指边数为零的图,但是零图可以有很多节点,平凡图只能有一个节点)
- 如果图中有桥,那么这个图的边连通度一定是1
- p阶完全图的边连通度是p-1,为了隔离开一个节点,必须要切断与这个节点相连的p-1条边
点连通度
同理,为了产生一个不连通的图或者孤立的点所需要的删去的点的最小个数
- p阶完全图的点连通度是p-1