说起测度,大概不少大佬都能讲得头头是道,其实也无非就几种,其他都类似,最简单的就是欧氏距离和余弦距离,这恐怕是最常用和常见的了,相信大多数都知晓,这就足够了。
看了下相关性的东西,我们知道在信号处理中有这个东西,
简而言之就是信号的时移前后具有相似的情况:公式如下
将一个x换成y即可,那么这就是两个信号的相关性。
因此,我今天看的以图搜图的主要内容即是与此类似,我觉得这种应用于人脸1:1识别没有问题,但在1:N识别或者相似性分析时估计有点慢,速度不行。因此在大规模搜图中必须采取一种策略。目前我还不知道这种策略,继续查查资料。
寡人亲自测试下这种情况下的人脸1:1识别效果如何:但这种只能说有一点点用,实际上还是有待提高
这明显是俩人啊,竟然91%了。【特征提取采用的VGG16预训练模型】
这俩还可以理解。
依旧回归主题,韩国美女热舞:
这种搜索方法其实没用策略,不妥。
下面给随机一个图:这也能达到85%,
也许你会说设置90%还是可以的。但我觉得这种情况下,直接像素来做效果同样不差
下面直接拿像素做:然而我被自己打脸了,同样的做法但都是差不多接近于1,说明上述方法有一定的效果。但真的很微小。
如果谁做出来不妨告诉我一下,多谢。明天再更新,回家睡觉
持续更新。。。
20200316-00:15更新
关于测度问题,下面细说一下常用的测度:
1-余弦测度,就是余弦公式,可以直接用sklearn中的现成函数调用,也可自己写
这里必须要清楚一个概念区别,余弦相似度和余弦距离,先不要混用,余弦相似度肯定是[-1,1],那么余弦距离肯定是正数[0,2],这从余弦公式也可推断出来。余弦距离=1-余弦相似度,这个可以从sklearn中源码看出,我可能就是看源码的高手,哈哈
很容易理解,距离越小,相似度越大,距离为0,那么相似度为1.
2-曼哈顿距离,就是L1距离,坐标的可行直线距离【来源城市街区距离】,两向量直接相减取绝对值之和。
3-欧式距离,这个不必我说了,自己玩吧。
另外有相关问题可以加入QQ群讨论,不设微信群
QQ群:868373192
语音图像深度学习群