tensorflow实现卷积神经网络

卷积神经网络的简介: 相对于传统的图像分类,卷积神经网络(Convolutional Neural Network, CNN)提取的特征能够达到很好的效果,同时不需要将特征提取和分类训练两个过程分开。 CNN的构成: (1)输入层,在CNN中,输入层与全连接网络的输入层类似,是一张图像的像素...

2018-04-17 11:03:32

阅读数 1715

评论数 0

tensorflow实现多层感知机

在前面的博客中我们已经讨论过softmax实现分类的例子,该模型最大的特点是简单易用,但是拟合能力不强。它和传统意义上的神经网络的最大区别是没有隐含层。 对于神经网络来说,引入非线性隐含层后,理论上只要隐含节点足够多,即使只有一个隐含层的神经网络也可以拟合任意函数。同时隐含层越多,越容易拟合复杂...

2018-04-09 10:58:48

阅读数 536

评论数 0

TensorFlow实现自编码器

自编码器介绍: 深度学习可以解决一些人工难以提取有效特征的问题。在深度学习的早期,它一直被认为是一种无监督特征学习的方法。对于深度学习用于特征学习有两个关键点: 1)无监督学习,即不需要标注的数据就可以对数据进行一定程度的学习,提取频繁出现的特征; 2)逐层抽象,即从简单的微观的特征开始,不...

2018-04-04 14:32:48

阅读数 309

评论数 0

tensorflow实战 Softmax Regression识别手写体数字

首先介绍一下MNIST数据集: MNIST数据集中每个图像是28*28像素大小的灰度图像,空白部分灰度值为0,有笔记的地方灰度值为(0,1]的取值,其中MNIST数据集中,训练样本为55000个,测试样本为10000个,验证集样本为5000个,每一个样本都有其对应的标签信息,即label。它们的...

2018-03-27 21:39:08

阅读数 1177

评论数 0

斯坦福大学机器学习笔记——推荐系统(协同过滤、低秩分解、推荐系统)

这个博客让我们来讨论一下推荐系统,首先我们来讨论一下为什么学习推荐系统: 1. 推荐系统是机器学习中的一个重要应用,它已经用于很多企业中,比如淘宝、今日头条、亚马逊等。它们会根据你的浏览记录,当你再次访问时,会给你推荐一些你感兴趣的东西。 2. 我们从前面学过的机器学习知道,对于一个算法特征的...

2018-01-15 15:34:44

阅读数 816

评论数 1

斯坦福大学机器学习笔记——异常检测算法(高斯分布、多元高斯分布、异常检测算法)

异常检测问题介绍: 异常检测算法主要用于无监督学习问题,但从某种角度看它又类似于一种有监督学习的问题,下面我们从一个例子中简单介绍一下什么是异常检测问题。 比如我们有一个飞机引擎制造商,对于一个新造出的飞机引擎我们想判断这个引擎是不是异常的。 假如我们有两个飞机引擎的特征:1)引擎运转时产生...

2018-01-14 21:58:33

阅读数 4055

评论数 0

斯坦福大学机器学习笔记——降维(PCA算法)

降维也是一种无监督学习的问题。所谓的降维,就是将高维度的数据降低到低维度空间,同时降维之后的数据又能够很好的表征原来数据的特性。 以具体的例子来说明一下什么是降维: 比如我们使用厘米和英尺表示同一物体的长度,如果我们使用一个仪器测量的结果单位是厘米,另一个仪器测量单位是英尺,两种仪器对同一物体...

2018-01-05 21:14:31

阅读数 2696

评论数 0

斯坦福大学机器学习笔记——聚类(k-均值聚类算法、损失函数、初始化、聚类数目的选择)

上面的博客的算法都是有监督学习的算法,即对于每个数据我们都有该数据对应的标签,数据集的形式如下: 而今天我们学习的算法是一种无监督学习的算法——聚类,该算法中的每个数据没有标签,数据集的形式如下: K-均值聚类 k-均值聚类是一种最常见的聚类算法,该算法对没有标签的数据集进行训练,然后将...

2017-12-21 10:54:51

阅读数 5832

评论数 2

斯坦福大学机器学习笔记——机器学习系统设计(误差分析、查全率和查准率、F1值)

这次博客我们主要讨论机器学习系统设计的主要问题,以及怎样巧妙的构建一个复杂的机器学习系统。 我们先用一个例子引入机器学习系统的设计: 以一个垃圾邮件分类器算法为例: 对于该问题,我们首先要做的是怎样选择并且表达特征向量x。我们可以选择100个词所构成的列表(这个词不仅包括垃圾邮件里面的词...

2017-12-05 16:38:41

阅读数 783

评论数 0

斯坦福大学机器学习笔记——当训练模型性能不好时的措施(假设评估、模型选择和交叉验证集、正则化、学习曲线)

以我们前面讲述的线性回归为例,比如我们在训练集上训练出最优的模型,但是当我们将其使用到测试集时,测试的误差很大,我们该怎么办? 我们一般采取的措施主要包括以下6种: 增加训练样本的数目(该方法适用于过拟合现象时,解决高方差。一般都是有效的,但是代价较大,如果下面的方法有效,可以优先采用下面的方式...

2017-12-02 15:32:53

阅读数 5077

评论数 0

斯坦福大学机器学习笔记——正则化的逻辑回归模型

在上面博客中我们讨论了正则化的线性回归模型,下面我们来讨论一下正则化的逻辑回归模型。 前面我们讲述了两种常用于逻辑回归的方法: 基于梯度下降法的逻辑回归模型 基于高级优化的逻辑回归模型 基于梯度下降法的逻辑回归模型: 首先我们还是需要先设计加入正则化后的损失函数,与线性回归模型相似,我们只需要...

2017-11-20 16:27:35

阅读数 185

评论数 0

斯坦福大学机器学习笔记——过拟合问题以及正则化的解决方法

当我们使用前面博客所讲述的线性回归和逻辑回归时,经常会出现一种过拟合(over-fitting)问题。下面对过拟合下一个定义:过拟合(over-fitting): 所谓的过拟合就是:如果我们有非常多的特征时,通过使用这些特征学习得到的假设可能非常好地适应训练集(代价函数很小,几乎为零),但是可能...

2017-11-20 10:34:59

阅读数 513

评论数 0

局部加权线性回归(内含代码)

在之前的博客中我们已经简单讨论过一些回归的算法,如使用假设和梯度下降法的单变量线性回归和多变量线性回归以及采用正规方程的线性回归,这次我们简单讨论一下局部加权线性回归(Local Weighted Liner Regression)。 局部加权回归可以看做正规方程的一种改进,通过上次博客中的代码...

2017-11-17 16:14:41

阅读数 4729

评论数 7

斯坦福大学机器学习笔记——逻辑回归、高级优化以及多分类问题

先简单说一下逻辑回归,其实会有很多人误解,会将逻辑回归当成回归算法,其实逻辑回归就是我们所说的分类问题,所谓的逻辑,一般我们说的逻辑就是逻辑0或者逻辑1,所以可以借此理解。但是逻辑回归不仅仅只包括两分类问题,它还包括多分类问题。 那么能否使用线性回归的思想解决逻辑回归吗,我们从以下两方面考虑: ...

2017-11-12 21:40:03

阅读数 1767

评论数 1

斯坦福大学机器学习笔记——特征和多项式回归以及正规方程

我们可以举一个例子来引入多项式回归: 比如我们之前遇到的房价问题,对于房价的影响我们假设有两个特征,一个是房子的宽度x1x_{1},另外一个是房子的长度x2x_{2},这针对房价的估测我们可以建立下面形式的假设: hθ(x)=θ0+θ1x1+θ2x2h_{\theta }(x)=\theta ...

2017-11-05 22:21:54

阅读数 2157

评论数 0

斯坦福大学机器学习笔记——多变量的线性回归以及梯度下降法注意事项(内有代码)

在前面博客中介绍了单变量线性回归的实现过程,本文将介绍多变量线性回归算法。 两者的对比如下: 1.数据方面的差异: 单变量线性回归数据: 多变量线性回归数据: 对于单变量线性回归来说,只有一个特征(房子的大小),而对于多变量线性特征回归特征的数量为多个(房子的大小、卧室的数量等)...

2017-10-30 17:54:48

阅读数 842

评论数 3

斯坦福大学机器学习笔记——单变量的线性回归以及损失函数和梯度下降法(包含代码)

回归问题: 所谓的回归问题就是给定的数据集,且每个数据集中的每个样例都有其正确的答案,通过给定的数据集进行拟合,找到一条能够最好代表该数据集的曲线,然后对于给定的一个样本,能够预测出该样本的答案(对于回归问题来说,最终的输出结果是一个连续的数值)。比如,房价预测问题,最终的输出房价是一个...

2017-10-27 16:30:38

阅读数 1557

评论数 2

TensorFlow实战Google深度学习框架第三章总结

该文主要是总结了Tensorflow实战Google深度学习框架的第三章,修正了代码中一些不存在函数的修改。

2017-10-25 20:45:47

阅读数 1485

评论数 0

TensorFlow实战Google深度学习框架第一章总结

机器学习定义: 如果一个程序可以在任务T上,随着经验E的增加,效果P也随之增加,则称这个程序可以从经验中学习。 例如:假设一个判断邮件是否为垃圾邮件的程序,则对应的任务T为给定一个邮件,分类这个邮件是否为垃圾邮件;经验E为给定的已经知道的邮件的标签;性能P这个程序正确分类垃圾邮件和非垃圾邮件的数量...

2017-10-25 20:40:23

阅读数 171

评论数 0

斯坦福大学机器学习笔记——机器学习基础以及有监督学习和无监督学习举例说明

本文主要介绍了什么是机器学习,以及机器学习的分类和有监督学习和无监督学习的区别

2017-10-25 20:27:59

阅读数 546

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭