微积分提纲+公式整理(大一上)

        各位西交利物浦的同学们大家好啊!期末在即,为了不挂科,我费了好大力气,尽自己所能的整理了这些提纲。内容粗浅,如果大家能看到,并且为大家的学习提供了一点点的帮助,那真的再好不过了。哦还有,我是按 MTH013 的课程进行整理的,由于课程不同,可能知识点有所欠缺,欢迎各位大佬在评论区补充,本人才疏学浅,若内容有误,欢迎大家指正。^_^

本博客仅供学习交流使用,侵删。


文章目录



Chapter 1 : Preliminaries


1.5 Functions and Their Graphs


1.5.1 Definition of Functions

Let D D D and R R R be nonempty sets. A function from D D D to R R R is a rule f f f of correspondence that assigns a unique element y ∈ R y \in R yR to each element x ∈ D x \in D xD

x is called the independent variable
y is called the dependent variable

the set D D D is called the domain of the function and denoted by D ( f ) D(f) D(f) or D f D_f Df
the set of all the values that y can take is called the range of the function and symbolically R ( f ) R(f) R(f) or R f R_f Rf


1.5.2 Some Special features of functions

  1. Even Functions and Odd Funtions
  2. Monotonic Funtions


1.6 Operations on Functions


1.6.1 Sums, Differences, Products, Quotients, Powers


( f ± g ) ( x ) = f ( x ) ± g ( x )   ,   x ∈ D (f\pm g)(x) = f(x) \pm g(x)\ ,\ x \in D (f±g)(x)=f(x)±g(x) , xD

( f ⋅ g ) ( x ) = f ( x ) ⋅ g ( x )   ,   x ∈ D (f \cdot g)(x) = f(x) \cdot g(x)\ ,\ x \in D (fg)(x)=f(x)g(x) , xD

( f g ) ( x ) = f ( x ) g ( x )   ,   x ∈ D (\dfrac{f}{g})(x) = \dfrac{f(x)}{g(x)}\ ,\ x\in D (gf)(x)=g(x)f(x) , xD and g ( x ) ≠ 0 g(x) \ne 0 g(x)=0

f n ( x ) = [ f ( x ) ] n   ,   n = 1 , 2 , 3...   ,   x ∈ D f^n(x) = [f(x)]^n\ ,\ n=1,2,3...\ ,\ x\in D fn(x)=[f(x)]n , n=1,2,3... , xD


1.6.2 Composition of Functions


denoted by g ( g ( x ) ) g(g(x)) g(g(x)) or ( g ∘ f ) ( x ) (g\circ f)(x) (gf)(x)

the domain of the composite function is : D ( g ∘ f ) = { x   ∣   x ∈ D ( f ) , f ( x ) ∈ D ( g ) } D(g\circ f)=\{x\ |\ x\in D(f), f(x) \in D(g)\} D(gf)={x  xD(f),f(x)D(g)}


1.6.3 Inverse Functions

If the function f f f is one to one, then the function $f^{-1} called the inverse of f f f .
If y = f ( x ) , t h e n   x = f − 1 ( y ) y = f(x), then\ x = f^{-1}(y) y=f(x),then x=f1(y)

The domains and ranges of f f f and f − 1 f^{-1} f1 are also reversed :

D ( f − 1 ) = R ( f ) ;    R ( f − 1 ) = D ( f ) D(f^{-1}) = R(f);\ \ R(f^{-1}) = D(f) D(f1)=R(f);  R(f1)=D(f)


Warning:

f − 1 ( x ) ≠ [ f ( x ) ] − 1 f^{-1}(x) \ne [f(x)]^{-1} f1(x)=[f(x)]1


The Graph of   y = f − 1 ( x ) \ y=f^{-1}(x)  y=f1(x)
在这里插入图片描述
Theorem A : A sufficient condition (充分条件) for the Existence of Inverse Function

If f f f is a monotonic funtion on its domain, then f f f has an inverse. And f f f and f − 1 f^{-1} f1 have the same kind of monotonicity.



1.7 Exponential and Logarithmic Functions (指对函数)


Theorem A : Properties of Exponents. (指数运算性质)

If a > 0 ,   b > 0 a > 0,\ b>0 a>0, b>0 and x x x and y y y are real numbers, then

(1) a x a y = a x + y a^xa^y = a^{x+y} axay=ax+y           (2) a x a y = a x − y \dfrac{a^x}{a^y} = a^{x-y} ayax=axy

(3) ( a x ) y = a x y (a^x)^y = a^{xy} (ax)y=axy            (4) a − x = 1 a x a^{-x} = \dfrac{1}{a^x} ax=ax1

(5) ( a b ) x = a x b x (ab)^x = a^xb^x (ab)x=axbx          (6) ( a b ) x = a x b x (\dfrac{a}{b})^x = \dfrac{a^x}{b^x} (ba)x=bxax


Theorem B : Properties of Logarithms

If a ,   b ,   c a,\ b,\ c a, b, c are positive numbers, where a ≠ 1 a \ne 1 a=1 , and if x x x is any real number, then

(1) log ⁡ a 1 = 0 \log_a1 = 0 loga1=0                                      (2) log ⁡ a b c = log ⁡ a b + log ⁡ a c \log_abc = \log_ab+\log_ac logabc=logab+logac

(3) log ⁡ a b c = log ⁡ a b − log ⁡ a c \log_a\dfrac{b}{c} = \log_ab - \log_ac logacb=logablogac              (4) log ⁡ a b x = x log ⁡ a b \log_ab^x = x\log_ab logabx=xlogab

(5) log ⁡ a a = 1 \log_aa=1 logaa=1                                      (6) a log ⁡ a b = b a^{\log_ab} = b alogab=b


Base changing formula for logarithms

log ⁡ a b = log ⁡ c b log ⁡ c a \log_ab = \frac{\log_cb}{\log_ca} logab=logcalogcb



1.8 The Trigonometric Functions (三角函数)

在这里插入图片描述 Important operations : \text{\red{Important operations :}} Important operations :

Identities

(1) sin ⁡ 2 x + cos ⁡ 2 x = 1 \sin^2x+\cos^2x=1 sin2x+cos2x=1               (2) sin ⁡ 2 x = sin ⁡ x cos ⁡ x \sin2x=\sin x\cos x sin2x=sinxcosx

(3) 1 + tan ⁡ 2 x = s e c 2 x 1+\tan^2x=sec^2x 1+tan2x=sec2x               (4) c o t 2 x + 1 = c s c 2 x cot^2x+1=csc^2x cot2x+1=csc2x


Confunction identities

(1) sin ⁡ ( π 2 − x ) = cos ⁡ x \sin(\frac{\pi}{2}-x)=\cos x sin(2πx)=cosx               (2) cos ⁡ ( π 2 − x ) = sin ⁡ x \cos(\frac{\pi}{2}-x)=\sin x cos(2πx)=sinx

(3) tan ⁡ ( π 2 − x ) = cot ⁡ x \tan(\frac{\pi}{2}-x)=\cot x tan(2πx)=cotx


Addition identities

(1) sin ⁡ ( x + y ) = sin ⁡ x cos ⁡ y + cos ⁡ x sin ⁡ y \sin(x+y)=\sin x\cos y+\cos x\sin y sin(x+y)=sinxcosy+cosxsiny

(2) cos ⁡ ( x + y ) = cos ⁡ x cos ⁡ y − sin ⁡ x sin ⁡ y \cos(x+y)=\cos x\cos y-\sin x\sin y cos(x+y)=cosxcosysinxsiny

(3) t a n ( x + y ) = tan ⁡ x + tan ⁡ y 1 − tan ⁡ x tan ⁡ y tan(x+y)=\frac{\tan x+\tan y}{1-\tan x\tan y} tan(x+y)=1tanxtanytanx+tany


Double-angle identities

(1) sin ⁡ 2 x = 2 sin ⁡ x cos ⁡ x \sin2x=2\sin x\cos x sin2x=2sinxcosx

(2) cos ⁡ 2 x = cos ⁡ 2 x − sin ⁡ 2 x = 2 cos ⁡ 2 x − 1 = 1 − 2 sin ⁡ 2 x \cos2x=\cos^2x-\sin^2x=2\cos^2x-1=1-2\sin^2 x cos2x=cos2xsin2x=2cos2x1=12sin2x


Sum identities

(1) sin ⁡ x + sin ⁡ y = 2 sin ⁡ ( x + y 2 ) cos ⁡ ( x − y 2 ) \sin x+\sin y=2\sin(\frac{x+y}{2})\cos(\frac{x-y}{2}) sinx+siny=2sin(2x+y)cos(2xy)

(2) cos ⁡ x + cos ⁡ y = 2 cos ⁡ ( x + y 2 ) c o s ( x − y 2 ) \cos x+\cos y=2\cos(\frac{x+y}{2})cos(\frac{x-y}{2}) cosx+cosy=2cos(2x+y)cos(2xy)


Product identities

(1) sin ⁡ x sin ⁡ y = − 1 2 [ cos ⁡ ( x + y ) − cos ⁡ ( x − y ) ] \sin x\sin y=-\frac{1}{2}[\cos(x+y)-\cos(x-y)] sinxsiny=21[cos(x+y)cos(xy)]

(2) cos ⁡ x cos ⁡ y = 1 2 [ c o s ( x + y ) + c o s ( x − y ) ] \cos x\cos y=\frac{1}{2}[cos(x+y)+cos(x-y)] cosxcosy=21[cos(x+y)+cos(xy)]

(3) sin ⁡ x cos ⁡ y = 1 2 [ sin ⁡ ( x + y ) + sin ⁡ ( x − y ) ] \sin x\cos y=\frac{1}{2}[\sin(x+y)+\sin(x-y)] sinxcosy=21[sin(x+y)+sin(xy)]



1.9 The Inverse Trigonometric Functions

在这里插入图片描述
(1) sin ⁡ ( cos ⁡ − 1 x ) = 1 − x 2 \sin(\cos^{-1}x)=\sqrt{1-x^2} sin(cos1x)=1x2

(2) cos ⁡ ( sin ⁡ − 1 x ) = 1 − x 2 \cos(\sin^{-1}x)=\sqrt{1-x^2} cos(sin1x)=1x2

(3) sec ⁡ ( tan ⁡ − 1 x ) = 1 + x 2 \sec(\tan^{-1}x)=\sqrt{1+x^2} sec(tan1x)=1+x2



Chapter 2 : Limits

Calculus is the study of limits



2.1 Introduction to Limits


2.1.1 Definition

To say that lim ⁡ x → ∞ f ( x ) = L \lim\limits_{x \to \infty}f(x)=L xlimf(x)=L means that when x x x is near but different from c c c then f ( x ) f(x) f(x) is near L L L


There is no limit :

(1) At a jump

(2) Too many wiggles


2.1.2 One-Sided Limits


Theorem A

lim ⁡ x → c f ( x ) = L \lim\limits_{x \to c}f(x)=L xclimf(x)=L if and only if lim ⁡ x → c − = L \lim\limits_{x\to c^-}=L xclim=L and lim ⁡ x → c + = L \lim\limits_{x\to c^+}=L xc+lim=L



2.2 Rigorous Study of Limits


Definition : Intuitive Meaning of Limit (极限的直观解释)

lim ⁡ x → c f ( x ) = L \lim\limits_{x\to c}f(x)=L xclimf(x)=L means when x x x is near but different from c c c then f(x) is near L L L


Rigorous Definition of Limit :

To say that lim ⁡ x → c f ( x ) = L \lim\limits_{x\to c}f(x)=L xclimf(x)=L means that for each given ϵ > 0 \epsilon > 0 ϵ>0 there is a corresponding δ > 0 \delta > 0 δ>0 such that 0 < ∣ x − c ∣ < δ 0<|x-c|<\delta 0<xc<δ implies ∣ f ( x ) − L ∣ < ϵ |f(x)-L|<\epsilon f(x)L<ϵ.



2.3 Limit Theorems


Theorem A : Main Limit Theorem

Let n n n be a positive integer, k k k be a constant, f f f and g g g be functions that have limits at c. Then :

(1) lim ⁡ x → c k = k \lim\limits_{x\to c}k = k xclimk=k                   (2) lim ⁡ x → c x = c \lim\limits_{x\to c}x = c xclimx=c

If lim ⁡ x → c f ( x ) = A ,   lim ⁡ x → c g ( x ) = B \lim\limits_{x\to c}f(x) = A,\ \lim\limits_{x\to c}g(x) = B xclimf(x)=A, xclimg(x)=B, then :

(3) lim ⁡ x → c k f ( x ) = k lim ⁡ x → c f ( x ) = k A \lim\limits_{x\to c}kf(x) = k\lim\limits_{x\to c}f(x) = kA xclimkf(x)=kxclimf(x)=kA

(4) lim ⁡ x → c [ f ( x ) ± g ( x ) ] = lim ⁡ x → c f ( x ) ± lim ⁡ x → c g ( x ) = A ± B \lim\limits_{x\to c}[f(x)\pm g(x)] = \lim\limits_{x\to c}f(x)\pm \lim\limits_{x\to c}g(x)=A\pm B xclim[f(x)±g(x)]=xclimf(x)±xclimg(x)=A±B

(5) lim ⁡ x → c [ f ( x ) ⋅ g ( x ) ] = lim ⁡ x → c f ( x ) ⋅ lim ⁡ x → c g ( x ) = A B \lim\limits_{x\to c}[f(x)\cdot g(x)]=\lim\limits_{x\to c}f(x)\cdot\lim\limits_{x\to c}g(x)=AB xclim[f(x)g(x)]=xclimf(x)xclimg(x)=AB

(6) lim ⁡ x → c f ( x ) g ( x ) = lim ⁡ x → c f ( x ) lim ⁡ x → c g ( x ) = A B ,   p r o v i d e d   lim ⁡ x → c = B ≠ 0 \lim\limits_{x\to c}\frac{f(x)}{g(x)}=\frac{\lim\limits_{x\to c}f(x)}{\lim\limits_{x\to c}g(x)}=\frac{A}{B},\ provided\ \lim\limits_{x\to c}=B\ne0 xclimg(x)f(x)=xclimg(x)xclimf(x)=BA, provided xclim=B=0


Corollary :

(7) lim ⁡ x → c [ f ( x ) ] n = [ lim ⁡ x → c f ( x ) ] n = A n \lim\limits_{x\to c}[f(x)]^n=[\lim\limits_{x\to c}f(x)]^n=A^n xclim[f(x)]n=[xclimf(x)]n=An,

(8) lim ⁡ x → c f ( x ) n = lim ⁡ x → c f ( x ) n = A n \lim\limits_{x\to c} \sqrt[n]{f(x)}=\sqrt[n]{\lim\limits_{x\to c}f(x)}=\sqrt[n]A xclimnf(x) =nxclimf(x) =nA , provided A > 0 A>0 A>0 whien n is even .


Theorem B : Substitution Theorem (代入法)

If f f f id a polynomial function or a rational function, then : lim ⁡ x → c f ( x ) = f ( c ) \lim\limits_{x\to c}f(x)=f(c) xclimf(x)=f(c)


Theorem C : Squeeze Theorem (夹逼定理)

Let f f f, g g g and h h h be functions satisfying f ( x ) ≤ g ( x ) ≤ h ( x ) f(x)\le g(x)\le h(x) f(x)g(x)h(x) for all x x x near c c c, except possibly at c c c. If lim ⁡ x → c f ( x ) = lim ⁡ x → c h ( x ) = L \lim\limits_{x\to c}f(x)=\lim\limits_{x\to c}h(x)=L xclimf(x)=xclimh(x)=L, then lim ⁡ x → c g ( x ) = L \lim\limits_{x\to c}g(x)=L xclimg(x)=L
在这里插入图片描述

Important Limits : \text{\red{Important Limits :}} Important Limits :

(1) lim ⁡ x → 0 x cos ⁡ 1 x = 0 \lim\limits_{x\to 0}x\cos\frac{1}{x}=0 x0limxcosx1=0                   lim ⁡ x → ∞ 1 x cos ⁡ x = 0 \lim\limits_{x\to\infty}\frac{1}{x}\cos x=0 xlimx1cosx=0

(2) lim ⁡ x → 0 1 x sin ⁡ x = 1 \lim\limits_{x\to 0}\frac{1}{x}\sin x=1 x0limx1sinx=1                   lim ⁡ x → ∞ x sin ⁡ 1 x = 1 \lim\limits_{x\to\infty}x\sin\frac{1}{x}=1 xlimxsinx1=1

(3) lim ⁡ x → 0 1 − cos ⁡ x x = 0 \lim\limits_{x\to0}\frac{1-\cos x}{x}=0 x0limx1cosx=0



2.4 Limits at Infinity, Infinite Limits


Limits at Infinity :

lim ⁡ x → ∞ 1 x = 0 \lim\limits_{x\to\infty}\frac{1}{x}=0 xlimx1=0              lim ⁡ x → − ∞ 1 x = 0 \lim\limits_{x\to-\infty}\frac{1}{x}=0 xlimx1=0


Infinite Limits :

lim ⁡ x → 0 + 1 x = ∞ \lim\limits_{x\to0^+}\frac{1}{x}=\infty x0+limx1=             lim ⁡ x → 0 − 1 x = − ∞ \lim\limits_{x\to0^-}\frac{1}{x}=-\infty x0limx1=



2.5 Limits Involving Trigonometric Functions


Theorem A : Limits of Trigonometric Function

(1) lim ⁡ x → c sin ⁡ x = sin ⁡ c \lim\limits_{x\to c}\sin x=\sin c xclimsinx=sinc                  (2) lim ⁡ x → c cos ⁡ x = cos ⁡ c \lim\limits_{x\to c}\cos x=\cos c xclimcosx=cosc

(3) lim ⁡ x → c tan ⁡ x = tan ⁡ c \lim\limits_{x\to c}\tan x=\tan c xclimtanx=tanc                (4) lim ⁡ x → c cot ⁡ x = cot ⁡ c \lim\limits_{x\to c}\cot x=\cot c xclimcotx=cotc

(5) lim ⁡ x → c sec ⁡ x = sec ⁡ c \lim\limits_{x\to c}\sec x=\sec c xclimsecx=secc                  (6) lim ⁡ x → c csc ⁡ x = csc ⁡ c \lim\limits_{x\to c}\csc x=\csc c xclimcscx=cscc



2.6 Natural Exponential, Natural Log


Theorem A : Limits of Exponential Functions

  1. lim ⁡ x → c a x = a c \lim\limits_{x\to c}a^x=a^c xclimax=ac

  2. If 0 < a < 1 0<a<1 0<a<1, then lim ⁡ x → c a x = 0 ,   lim ⁡ x → − ∞ a x = ∞ \lim\limits_{x\to c}a^x=0,\ \lim\limits_{x\to-\infty}a^x=\infty xclimax=0, xlimax=

  3. If a > 1 a>1 a>1, then lim ⁡ x → ∞ a x = ∞ , lim ⁡ x → − ∞ a x = 0 \lim\limits_{x\to\infty}a^x=\infty, \lim\limits_{x\to-\infty}a^x=0 xlimax=,xlimax=0


Theorem B : Limits for Inverse Functions

If f f f has an inverse and lim ⁡ x → a f ( x ) = f ( a ) = c \lim\limits_{x\to a}f(x)=f(a)=c xalimf(x)=f(a)=c, then :

lim ⁡ x → c f − 1 ( x ) = f − 1 ( c ) = a \lim\limits_{x\to c}f^{-1}(x)=f^{-1}(c)=a xclimf1(x)=f1(c)=a


Theorem C : Limits of Logarithmic Functions

  1. If a > 0   ( a ≠ 1 ) a>0\ (a\ne1) a>0 (a=1) and c > 0 c>0 c>0, then lim ⁡ x → c l o g a x = l o g a c \lim\limits_{x\to c}log_ax=log_ac xclimlogax=logac

  2. If a > 1 a>1 a>1, then lim ⁡ x → ∞ l o g a x = ∞ ,   lim ⁡ x → 0 + l o g a x = − ∞ \lim\limits_{x\to\infty}log_ax=\infty,\ \lim\limits_{x\to0^+}log_ax=-\infty xlimlogax=, x0+limlogax=

  3. If 0 < a < 1 0<a<1 0<a<1, then lim ⁡ x → ∞ l o g a x = − ∞ ,   lim ⁡ x → 0 + l o g a x = ∞ \lim\limits_{x\to\infty}log_ax=-\infty,\ \lim\limits_{x\to0^+}log_ax=\infty xlimlogax=, x0+limlogax=


Theorem D : Limits of Inverse Trig. Functions

  1. lim ⁡ x → c arcsin ⁡ x = arcsin ⁡ c ,   c ∈ ( − 1 , 1 ) \lim\limits_{x\to c}\arcsin x=\arcsin c,\ c\in(-1,1) xclimarcsinx=arcsinc, c(1,1)

  2. lim ⁡ x → c arccos ⁡ x = arccos ⁡ c ,   c ∈ ( − 1 , 1 ) \lim\limits_{x\to c}\arccos x=\arccos c,\ c\in(-1,1) xclimarccosx=arccosc, c(1,1)

  3. lim ⁡ x → c arctan ⁡ x = arctan ⁡ c ,   c ∈ ( − ∞ . ∞ ) \lim\limits_{x\to c}\arctan x=\arctan c,\ c\in(-\infty.\infty) xclimarctanx=arctanc, c(.)

  4. lim ⁡ x → ∞ arctan ⁡ x = π 2 ,   lim ⁡ x → − ∞ arctan ⁡ x = − π 2 \lim\limits_{x\to\infty}\arctan x=\frac{\pi}{2},\ \lim\limits_{x\to-\infty}\arctan x=-\frac{\pi}{2} xlimarctanx=2π, xlimarctanx=2π


Continuous Compound Interest (连续复利问题)

lim ⁡ x → ± ∞ ( 1 + 1 x ) x = e \lim\limits_{x\to\pm\infty}(1+\frac{1}{x})^x=e x±lim(1+x1)x=e

lim ⁡ x → 0 ( 1 + x ) 1 x = e \lim\limits_{x\to0}(1+x)^\frac{1}{x}=e x0lim(1+x)x1=e

lim ⁡ x → ∞ ( 1 + r x ) x = e r \lim\limits_{x\to\infty}(1+\frac{r}{x})^x=e^r xlim(1+xr)x=er


*Hyperbolic Functions

(1) sinh ⁡ x = e x − e − x 2 \sinh x=\frac{e^x-e^{-x}}{2} sinhx=2exex        (2) cosh ⁡ x = e x + e − x 2 \cosh x=\frac{e^x+e^{-x}}{2} coshx=2ex+ex

(3) tanh ⁡ x = sinh ⁡ x cosh ⁡ x \tanh x=\frac{\sinh x}{\cosh x} tanhx=coshxsinhx         (4) coth ⁡ x = cosh ⁡ x sinh ⁡ x \coth x=\frac{\cosh x}{\sinh x} cothx=sinhxcoshx

(5) s e c h x = 1 cosh ⁡ x sech x=\frac{1}{\cosh x} sechx=coshx1          (6) c s c h x = 1 sinh ⁡ x cschx=\frac{1}{\sinh x} cschx=sinhx1



对于 lim ⁡ x → 0 f ( x ) g ( x ) \lim\limits_{x\to 0}\frac{f(x)}{g(x)} x0limg(x)f(x),若分子次数低于分母,极限为0,分子次数高于分母,极限不存在。

lim ⁡ x → c f ( x ) g ( x ) = A \lim\limits_{x\to c}\frac{f(x)}{g(x)}=A xclimg(x)f(x)=A , lim ⁡ x → c g ( x ) = 0 ⇒ lim ⁡ x → c f ( x ) = 0 \lim\limits_{x\to c}g(x)=0 \Rightarrow\lim\limits_{x\to c}f(x)=0 xclimg(x)=0xclimf(x)=0



2.7 Continuity of Functions


2.7.1 Continuity and Discontinuity

Let f f f be defined on an open interval containing c . c. c. We say that f f f is continuous at c c c if lim ⁡ x → c f ( x ) = f ( c ) \lim\limits_{x\to c}f(x)=f(c) xclimf(x)=f(c). Or equivalently, lim ⁡ h → 0 f ( c + h ) = f ( c ) . \lim\limits_{h\to0}f(c+h)=f (c). h0limf(c+h)=f(c).


Theorem A : Continuity of Polynomial and Rational Functions

A polynomial function is continuous at every real number c c c. A rational function is continuous at every real number c c c in its domain, that is, everywhere except where it denominator is zero.


Theorem B : Continuity of Absolute Value and nth Root functions

The absolute value function is continuous at every real number c c c. If n n n is odd, the nth-root function is continuous at every real number c c c, if n is even, the nth-root function is continuous at every positive real number c c c.


Theorem C : Continuity under Function Operations

If f f f and g g g are continuous at c c c, then so are k f kf kf , f + g f+g f+g , f − g f-g fg , f ⋅ g f\cdot g fg , f g \frac{f}{g} gf , f n f^n fn , and f n \sqrt[n]f nf .


Theorem D : Continuity of Transcendental Functions

The functions

sin ⁡ x ,   cos ⁡ x ,   tan ⁡ x ,   cot ⁡ x ,   sec ⁡ x ,   csc ⁡ x \sin x,\ \cos x,\ \tan x,\ \cot x,\ \sec x,\ \csc x sinx, cosx, tanx, cotx, secx, cscx

sin ⁡ − 1 x ,   cos ⁡ − 1 x ,   tan ⁡ − 1 x ,   cot ⁡ − 1 x \sin^{-1} x,\ \cos^{-1} x,\ \tan^{-1} x,\ \cot^{-1} x sin1x, cos1x, tan1x, cot1x

a x ,   log ⁡ a x a^x,\ \log_ax ax, logax

are continuous at every point in the interior of their domain.


Theorem E : Continuity of composite function

If g g g is continuous at c c c and f f f is continuous at g ( c ) g(c) g(c), then the composite f ∘ g f\circ g fg is continuous at c c c.


2.7.2 Removable and Nonremovable

A point of discontinuity is called removable if the function can be defined or redefined at c c c so as to make the function continuous. That is, if lim ⁡ x → c f ( x ) \lim\limits_{x\to c}f(x) xclimf(x) exists, but f ( c ) f(c) f(c) is not defined, or lim ⁡ x → c f ( x ) \lim\limits_{x\to c}f(x) xclimf(x) exists and f ( c ) f(c) f(c) is defined, but lim ⁡ x → c f ( x ) ≠ f ( C ) \lim\limits_{x\to c}f(x)\ne f(C) xclimf(x)=f(C), then c c c is called removable.
在这里插入图片描述
Otherwise, a point of discontinuity c c c called nonremovable
在这里插入图片描述

Definition : Continuity on an Interval

The function f f f is right continuous at a a a if lim ⁡ x → a + f ( x ) = f ( a ) \lim\limits_{x\to a^+}f(x)=f(a) xa+limf(x)=f(a).
The function f f f is left continuous at a a a if lim ⁡ x → a − f ( x ) = f ( a ) \lim\limits_{x\to a^-}f(x)=f(a) xalimf(x)=f(a).
We say f f f is continuous on the closed interval [ a , b ] [a,b] [a,b] if it is : (1) continuous on ( a , b ) (a,b) (a,b), (2) right continuous at a a a, (3) left continuous at b b b.


Theorem F : Intermediate Value Theorem (介值定理)

Let f f f be a function defined on [ a , b ] [a,b] [a,b] , and let W W W be a number between f ( a ) f(a) f(a) and f ( b ) f(b) f(b) . If f f f is continuous on [ a , b ] [a,b] [a,b], then there is at least one number c c c between a a a and b b b such that f ( c ) = W f(c)=W f(c)=W.


Theorem G : Zero Point Theorem (零点定理)

If f f f is continuous on [ a , b ] [a,b] [a,b] , and if f ( a ) f(a) f(a) and f ( b ) f(b) f(b) are nonzero and have opposite signs, then there is at least one solution of the equation f ( x ) = 0 f(x)=0 f(x)=0 in the interval ( a , b ) (a,b) (a,b).



2.8 Infinitesimals and Order of Infinitesimals (无穷小以及无穷小的阶)


2.8.1 The concept of Infinitesimal

If a function f ( x ) → 0 f(x)\to0 f(x)0 as x → c x\to c xc, then f ( x ) f(x) f(x) is called an infinitesimal as x → c x\to c xc


2.8.2 Properties of Infinitesimals


Theorem 1 :

lim ⁡ x → c f ( x ) = L \lim\limits_{x\to c}f(x)=L xclimf(x)=L if and only if lim ⁡ x → c ( f ( x ) − L ) = 0 \lim\limits_{x\to c}(f(x)-L)=0 xclim(f(x)L)=0, that is, f ( x ) − L f(x)-L f(x)L is an infinitesimal as x → c x\to c xc.


Theorem 2 :

(1) The sum of finite number of infinitesimals is an infinitesimal.

(2) The product of finite number of infinitesimals is an infinitesimal.

(3) The product of an infinitesimal and a bounded function is an infinitesimal.


2.8.3 Orders of Infinitesimals

Let lim ⁡ x → c α ( x ) = 0 \lim\limits_{x\to c}\alpha(x)=0 xclimα(x)=0 and lim ⁡ x → c β ( x ) = 0 \lim\limits_{x\to c}\beta(x)=0 xclimβ(x)=0
(1) If lim ⁡ x → c β ( x ) α ( x ) = 0 \lim\limits_{x\to c}\frac{\beta(x)}{\alpha(x)}=0 xclimα(x)β(x)=0, then we say that β ( x ) \beta(x) β(x) is an infinitesimal of higher order than α ( x ) \alpha(x) α(x), denoted by β ( x ) = o ( α ( x ) ) \beta(x)=o(\alpha(x)) β(x)=o(α(x)) as x → c x\to c xc
(2) If lim ⁡ x → c β x α ( x ) = 1 \lim\limits_{x\to c}\frac{\beta{x}}{\alpha(x)}=1 xclimα(x)βx=1, then we say that β ( x ) \beta(x) β(x) and α ( x ) \alpha(x) α(x) are equivalent infinitesimals, denoted by β ( x ) ∼ α ( x ) \beta(x)\sim\alpha(x) β(x)α(x) or α ( x ) ∼ β ( x ) \alpha(x)\sim\beta(x) α(x)β(x) as x → c x\to c xc


as x → 0 x\to0 x0 :

x ∼ sin ⁡ x ∼ tan ⁡ x ∼ arcsin ⁡ x ∼ arctan ⁡ x ∼ ln ⁡ ( 1 + x ) ∼ e x − 1 x\sim\sin x\sim\tan x\sim\arcsin x\sim\arctan x\sim\ln(1+x)\sim e^x-1 xsinxtanxarcsinxarctanxln(1+x)ex1

1 − c o s x ∼ x 2 2 1-cosx\sim\frac{x^2}{2} 1cosx2x2

( 1 + x ) α − 1 ∼ α x (1+x)^\alpha-1\sim\alpha x (1+x)α1αx


2.8.4 Substitution of equivalent Infinitesimals


Theorem 3

Suppose that α 1 ( x ) ∼ α 2 ( x ) ,   β 1 ( x ) ∼ β 2 ( x ) \alpha_1(x)\sim\alpha_2(x),\ \beta_1(x)\sim\beta_2(x) α1(x)α2(x), β1(x)β2(x) as x → c x\to c xc . Suppose lim ⁡ x → c β 2 ( x ) α 2 ( x ) \lim\limits_{x\to c}\frac{\beta_2(x)}{\alpha_2(x)} xclimα2(x)β2(x) exists. Then

lim ⁡ x → c β 1 ( x ) α 1 ( x ) = lim ⁡ x → c β 2 ( x ) α 2 ( x ) \lim\limits_{x\to c}\frac{\beta_1(x)}{\alpha_1(x)}=\lim\limits_{x\to c}\frac{\beta_2(x)}{\alpha_2(x)} xclimα1(x)β1(x)=xclimα2(x)β2(x)



Chapter 3 : The Derivative


3.2 The derivative

The derivative of a function f f f is another function f ′ f^\prime f whose value at any number x x x is f ′ ( x ) = lim ⁡ h → 0 f ( x + h ) − f ( x ) h f^\prime(x)=\lim\limits_{h\to0}\frac{f(x+h)-f(x)}{h} f(x)=h0limhf(x+h)f(x) . If this limit does exist, we say that f f f is differentiable (可微、可导) at x x x .


Theorem A : Differentiability Implies Continuity

If f ′ ( c ) f^\prime(c) f(c) exists, the f f f is continuous at c c c .

But, If a function f f f is continuous at c c c, it doesn’t follow that f f f has derivative at c c c .在这里插入图片描述


3.3 Rules for Finding Derivatives


Theorem A : Constant Multiple Rule

( k f ) ′ ( x ) = k ⋅ f ′ ( x ) (kf)^\prime(x)=k\cdot f^\prime(x) (kf)(x)=kf(x)


Theorem B : Sum Rule

[ f ( x ) + g ( x ) ] ′ = f ′ ( x ) + g ′ ( x ) [f(x)+g(x)]^\prime=f^\prime(x)+g^\prime(x) [f(x)+g(x)]=f(x)+g(x)


Definition : Linear operator

A function L L L is called a linear operator if for all functions f f f and g g g :

  1. L ( k f ) = k L ( f ) L(kf)=kL(f) L(kf)=kL(f), for every constant k k k
  2. L ( f + g ) = L ( f ) + L ( g ) L(f+g)=L(f)+L(g) L(f+g)=L(f)+L(g)

Theorem C : Product Rule

( f ⋅ g ) ′ ( x ) = f ( x ) g ′ ( x ) + f ′ ( x ) g ( x ) (f\cdot g)^\prime(x)=f(x)g^\prime(x)+f^\prime(x)g(x) (fg)(x)=f(x)g(x)+f(x)g(x)


Theorem D : Qoutient Rule

( f g ) ′ ( x ) = g ( x ) f ′ ( x ) − f ( x ) g ′ ( x ) g 2 ( x ) (\frac{f}{g})^\prime(x)=\frac{g(x)f^\prime(x)-f(x)g^\prime(x)}{g^2(x)} (gf)(x)=g2(x)g(x)f(x)f(x)g(x)



3.4 Derivatives of Trigonometric Function


Theorem A

( sin ⁡ x ) ′ = cos ⁡ x (\sin x)^\prime=\cos x (sinx)=cosx                     ( cos ⁡ x ) ′ = − sin ⁡ x (\cos x)^\prime=-\sin x (cosx)=sinx

( tan ⁡ x ) ′ = sec ⁡ 2 x (\tan x)^\prime=\sec^2x (tanx)=sec2x                   ( cot ⁡ x ) ′ = − c s c 2 x (\cot x)^\prime=-csc^2x (cotx)=csc2x

( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x (\sec x)^\prime=\sec x\tan x (secx)=secxtanx           ( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x (\csc x)^\prime=-\csc x\cot x (cscx)=cscxcotx



3.5 The Chain Rule


Theorem A : Chain Rule

( f ∘ g ) ′ ( x ) = f ′ ( g ( x ) ) ⋅ g ′ ( x ) (f\circ g)^\prime(x)=f^\prime(g(x))\cdot g^\prime(x) (fg)(x)=f(g(x))g(x)    or     d y d x = d y d u d u d x \frac{\mathrm{d}y}{\mathrm{d}x}=\frac{\mathrm{d}y}{\mathrm{d}u}\frac{\mathrm{d}u}{\mathrm{d}x} dxdy=dudydxdu



3.6 Derivatives of Inverse Functions


Theorem A : Monotonicity Theorem

Let f f f be continuous on an interval I I I and differentiable at every interior point of I I I .

(1) If f ′ ( x ) > 0 f^\prime(x)>0 f(x)>0 for all x x x interior to I I I , then f f f is increasing on I I I .

(2) If f ′ ( x ) < 0 f^\prime(x)<0 f(x)<0 for all x x x interior to I I I , then f f f is decreasing on I I I .


Theorem B : Inverse Function Theorem

( f − 1 ) ′ ( y ) = 1 f ′ ( x ) (f^{-1})^\prime(y)=\frac{1}{f^\prime(x)} (f1)(y)=f(x)1



3.7 Higher-order Derivatives


f ′ ′ ( x ) = d d x ( f ′ ( x ) ) f^{\prime\prime}(x)=\frac{\mathrm{d}}{\mathrm{dx}}(f^\prime(x)) f(x)=dxd(f(x))

f ′ ′ ′ ( x ) = d d x ( f ′ ′ ( x ) ) f^{\prime\prime\prime}(x)=\frac{\mathrm{d}}{\mathrm{dx}}(f^{\prime\prime}(x)) f(x)=dxd(f(x))

f ( 4 ) ( x ) = d d x ( f ′ ′ ′ ( x ) ) f^{(4)}(x)=\frac{\mathrm{d}}{\mathrm{dx}}(f^{\prime\prime\prime}(x)) f(4)(x)=dxd(f(x))



3.8 Implicit Differentiation (隐函数求导法)


The method just illustrated for finding d y d x \frac{\mathrm{dy}}{\mathrm{dx}} dxdy without first solving the given equation for y y y explicitly in terms of x x x is called Implicit Differentiation.



3.9 Related Rates (相关变化率问题)

在这里插入图片描述
在这里插入图片描述


3.10 Derivatives of Exponential and Logarithmic Functions


(1) ( ln ⁡ x ) ′ = 1 x (\ln x)^\prime=\frac{1}{x} (lnx)=x1                     (2) ( e x ) ′ = e x (e^x)^\prime=e^x (ex)=ex

(3) ( log ⁡ a x ) ′ = 1 x ln ⁡ a (\log_ax)^\prime=\frac{1}{x\ln a} (logax)=xlna1            (4) ( a x ) ′ = a x ln ⁡ a (a^x)^\prime=a^x\ln a (ax)=axlna



3.11 Derivatives of Inverse Trigonometric Functions


(1) ( arcsin ⁡ x ) ′ = 1 1 − x 2 ,   − 1 < x < 1 (\arcsin x)^\prime=\frac{1}{\sqrt{1-x^2}},\ -1<x<1 (arcsinx)=1x2 1, 1<x<1

(2) ( arccos ⁡ x ) ′ = − 1 1 − x 2 ,   − 1 < x < 1 (\arccos x)^\prime=-\frac{1}{\sqrt{1-x^2}},\ -1<x<1 (arccosx)=1x2 1, 1<x<1

(3) ( arctan ⁡ x ) ′ = 1 1 + x 2 (\arctan x)^\prime=\frac{1}{1+x^2} (arctanx)=1+x21



3.12 Differentials and Approximations (微分和近似)


3.12.1 Differentials


d x = Δ x \mathrm{d}x=\Delta x dx=Δx          d y = f ′ ( x ) d x \mathrm{d}y=f^\prime(x)\mathrm{d}x dy=f(x)dx

d x = Δ x \mathrm{d}x=\Delta x dx=Δx is called the differential of the independent variable x x x

d y = f ′ ( x ) d x \mathrm{d}y=f^\prime(x)\mathrm{d}x dy=f(x)dx is called the differential of the dependent variable y y y


3.12.2 Approximations


f ( x 0 + Δ x ) ) ≈ f ( x 0 ) + d y = f ( x 0 ) + f ′ ( x 0 ) Δ x f(x_0+\Delta x))\thickapprox f(x_0)+\mathrm{d}y=f(x_0)+f^\prime(x_0)\Delta x f(x0+Δx))f(x0)+dy=f(x0)+f(x0)Δx
在这里插入图片描述

3.12.3 Linear Approximation (线性逼近)


If f f f is differentiable at a a a , then the tangent line to f f f at ( a , f ( a ) ) (a,f(a)) (a,f(a)) is given by :

L ( x ) = f ( a ) + f ′ ( a ) ( x − a ) L(x) = f(a)+f^\prime(a)(x-a) L(x)=f(a)+f(a)(xa)

The function L ( x ) L(x) L(x) is called the linear approximation to the function f f f at a a a .



Chapter 4 : Applications of the Derivative


4.1 Maxima and Minima


Let S S S , the domain of f f f , contain the point c c c . We say that :
(i) f ( c ) f(c) f(c) is the maximum value of f f f on S S S if f ( c ) ≥ f ( x ) f(c)\ge f(x) f(c)f(x) for all x x x in S S S .
(ii) f ( c ) f(c) f(c) is the minimum value of f f f on S S S if f ( c ) ≤ f ( x ) f(c)\le f(x) f(c)f(x) for all x x x in S S S .
(iii) f ( c ) f(c) f(c) is an extreme value of f f f on S S S if it is either maximum value or the minimum value.
(iv) the function we want to maximize or minimize is the objective function.


Theorem A : Max-Min Existence Theorem

If f f f is continuous on a closed interval [ a , b ] [a,b] [a,b] , then f f f attains both a maximum value and a minimum value there.


Theorem B : Critical Point Theorem

Let f f f be defined on an interval I I I containing the point c c c. If f ( c ) f(c) f(c) is an extreme value, then c c c must be a critical point; that is, either c c c is :
(i) an end point of I I I
(ii) a stationary point of f f f; that is, a point where f ′ ( c ) = 0 f^\prime(c)=0 f(c)=0
(iii) a singular point of f f f; that is, a point where f ′ ( c ) f^\prime(c) f(c) doesn’t exist



4.2 Monotonicity and Concavity


4.2.1 The First Derivative and Monotonicity


Let f f f be continuous on an interval I I I and differentiable at every interior point of I I I .
(1) If f ′ ( x ) > 0 f^\prime(x)>0 f(x)>0 for all x x x interior to I I I, then f f f is increasing on I I I .
(2) If f ′ ( x ) < 0 f^\prime(x)<0 f(x)<0 for all x x x interior to I I I, then f f f is decreasing on I I I .


4.2.2 The Second Derivative and Concavity


Let f f f be differentiable on an open interval I I I . We say that f f f is concave up on I I I if f ′ f^\prime f increasing on I I I ( f ′ ′ ( x ) > 0 f^{\prime\prime}(x)>0 f(x)>0), and concave down on I I I if f ′ f^\prime f is decreasing on I I I ( f ′ ′ ( x ) < 0 f^{\prime\prime}(x)<0 f(x)<0) .
在这里插入图片描述

4.2.3 Inflection Points (拐点)


We call ( c , f ( c ) ) (c,f(c)) (c,f(c)) is an inflection point of f f f if f f f is concave up on one side and concave down on the other side.



4.3 Local Extrema and Extrema on Open Intervals


(i) f ( c ) f(c) f(c) is a local maximum value (极大值) of f f f if there is an interval ( a , b ) (a,b) (a,b) containing c c c such that f ( c ) f(c) f(c) is the maximum value (最大值) of f f f on ( a , b ) ∩ S (a,b)\cap S (a,b)S
(ii) f ( c ) f(c) f(c) is a local minimum value (极小值) of f f f if there is an interval ( a , b ) (a,b) (a,b) containing c c c such that f ( c ) f(c) f(c) is the minimu;m value (最小值) of f f f on ( a , b ) ∩ S (a,b)\cap S (a,b)S
(iii) f ( c ) f(c) f(c) is a local extreme (极值) of f f f if it is either a local maximum or a local minimum value


Theorem A : First Derivative Test

Let f f f be continuous on an open interval ( a , b ) (a,b) (a,b) containing a critical point c c c.
(i) If f ′ ( x ) > 0 f^\prime(x)>0 f(x)>0 for all x in ( a , c ) (a,c) (a,c) and f ′ ( x ) < 0 f^\prime(x)<0 f(x)<0 for all x x x in ( c , b ) (c,b) (c,b) , then f ( c ) f(c) f(c) is a local maximum value of f f f.
(ii) If f ′ ( x ) < 0 f^\prime(x)<0 f(x)<0 for all x x x in ( a , c ) (a,c) (a,c) and f ′ ( x ) > 0 f^\prime(x)>0 f(x)>0 for all x x x in ( c , b ) (c,b) (c,b) , then f ( c ) f(c) f(c) is a local minimum value of f f f.


Theorem B : Second Derivative Test

Let f ′ f^\prime f and f ′ ′ f^{\prime\prime} f exist at every point in an open interval ( a , b ) (a,b) (a,b) containing c c c , and suppose that f ′ ( c ) = 0 f^\prime(c)=0 f(c)=0
(i) If f ′ ′ ( c ) < 0 f^{\prime\prime}(c)<0 f(c)<0, f ( c ) f(c) f(c) is a local maximum value of f f f.
(ii) If f ′ ′ ( c ) > 0 f^{\prime\prime}(c)>0 f(c)>0, f ( c ) f(c) f(c) is a local minimum value of f f f.



4.6 Mean Value Theorem for Derivatives


Theorem A

If f f f is continuous on a closed interval [ a , b ] [a,b] [a,b] and differentiable on its interior ( a , b ) (a,b) (a,b) , then there is at least one number c c c in ( a , b ) (a,b) (a,b) where

f ( b ) − f ( a ) b − a = f ′ ( c ) \frac{f(b)-f(a)}{b-a}=f^\prime(c) baf(b)f(a)=f(c)

or, equivalently, where f ( b ) − f ( a ) = f ′ ( c ) ( b − a ) f(b)-f(a)=f^\prime(c)(b-a) f(b)f(a)=f(c)(ba)


Rolle’s Theorem

If f f f is continuous on a closed interval [ a , b ] [a,b] [a,b] and differentiable on its interior ( a , b ) (a,b) (a,b), and if f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b), then there is at least one number c c c in ( a , b ) (a,b) (a,b) where f ′ ( c ) = 0 f^\prime(c)=0 f(c)=0.


Theorem B

If F ′ ( x ) = G ′ ( x ) F^\prime(x)=G^\prime(x) F(x)=G(x) for all x in ( a , b ) (a,b) (a,b), then there is a constant C C C such that

F ( x ) = G ( x ) + C F(x)=G(x)+C F(x)=G(x)+C

for all x x x in ( a , b ) (a,b) (a,b)



4.7 L’Hopital’s Rule


Theorem A : L’Hopital’s Rule for forms of type 0 0 \frac{0}{0} 00

Suppose that lim ⁡ x → u f ( x ) = lim ⁡ x → u g ( x ) = 0 \lim\limits_{x\to u}f(x)=\lim\limits_{x\to u}g(x)=0 xulimf(x)=xulimg(x)=0

If lim ⁡ x → u f ′ ( x ) g ′ ( x ) \lim\limits_{x\to u}\frac{f^\prime(x)}{g^\prime(x)} xulimg(x)f(x) exists or ( − ∞   o r   ∞ ) (-\infty\ or\ \infty) ( or ), then :

lim ⁡ x → u f ( x ) g ( x ) = lim ⁡ x → u f ′ ( x ) g ′ ( x ) \lim\limits_{x\to u}\frac{f(x)}{g(x)}=\lim\limits_{x\to u}\frac{f^\prime(x)}{g^\prime(x)} xulimg(x)f(x)=xulimg(x)f(x)


Theorem B : L’Hopital’s Rule for forms of type ∞ ∞ \frac{\infty}{\infty}

Suppose that lim ⁡ x → u ∣ f ( x ) ∣ = lim ⁡ x → u ∣ g ( x ) ∣ = ∞ \lim\limits_{x\to u}|f(x)|=\lim\limits_{x\to u}|g(x)|=\infty xulimf(x)=xulimg(x)=

If lim ⁡ x → u f ′ ( x ) g ′ ( x ) \lim\limits_{x\to u}\frac{f^\prime(x)}{g^\prime(x)} xulimg(x)f(x) exists or ( − ∞   o r   ∞ ) (-\infty\ or\ \infty) ( or ), then :

lim ⁡ x → u f ( x ) g ( x ) = lim ⁡ x → u f ′ ( x ) g ′ ( x ) \lim\limits_{x\to u}\frac{f(x)}{g(x)}=\lim\limits_{x\to u}\frac{f^\prime(x)}{g^\prime(x)} xulimg(x)f(x)=xulimg(x)f(x)


Theorem C : L’Hopital’s Rule for forms of type 0 ⋅ ∞ 0\cdot\infty 0 and ∞ − ∞ \infty-\infty

(1) 0 ⋅ ∞ ⇒ 0 0 0\cdot\infty\Rightarrow\frac{0}{0} 000

(2) ∞ − ∞ \infty-\infty : 通分 + 洛必达


Theorem D : L’Hopital’s Rule for forms of type 1 ∞ ,   ∞ 0 ,   0 0 1^\infty,\ \infty^0,\ 0^0 1, 0, 00

两边取对数。



4.10 Antiderivatives and Indefinite Integral


We call F F F an antiderivatives of f f f on the interval I I I if D x F ( x ) = f ( x ) D_xF(x)=f(x) DxF(x)=f(x) on I I I, that is, if F ′ ( x ) = f ( x ) F^\prime(x)=f(x) F(x)=f(x) on I I I.

If F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x) on the interval I I I , then F ( x ) F(x) F(x) is called an antiderivative (反导数) or primitive function (原函数) on I I I.

F ( x ) + C F(x)+C F(x)+C, where C C C is an arbitrary constant, is called the general antiderivative or indefinite integral (不定积分) of f f f on I I I.

The indefinite integral of f ( x ) f(x) f(x) is denoted by ∫ f ( x ) d x = F ( x ) + C \int f(x)\mathrm{d}x=F(x)+C f(x)dx=F(x)+C.


Integration and differentiation are inverse operations to each other :

D x ∫ f ( x ) d x = f ( x ) D_x\int f(x)\mathrm{d}x=f(x) Dxf(x)dx=f(x)              ∫ D x F ( x ) d x = F ( x ) + C \int D_xF(x)\mathrm{d}x=F(x)+C DxF(x)dx=F(x)+C


Theorem A
在这里插入图片描述

Theorem B : Indefinite Integral Is a Linear Operator

∫ k f ( x ) d x = k ∫ f ( x ) d x .   k ≠ 0 \int kf(x)\mathrm{d}x=k\int f(x)\mathrm{d}x.\ k\ne0 kf(x)dx=kf(x)dx. k=0

∫ [ f ( x ) + g ( x ) ] d x = ∫ f ( x ) d x + ∫ g ( x ) d x \int[f(x)+g(x)]\mathrm{d}x=\int f(x)\mathrm{d}x+\int g(x)\mathrm{d}x [f(x)+g(x)]dx=f(x)dx+g(x)dx


Theorem C : Substitution Rule for Indefinite Integrals

Let u = g ( x ) u=g(x) u=g(x)

∫ f ( g ( x ) ) g ′ ( x ) d x = ∫ f ( u ) d u = F ( u ) + C = F ( g ( x ) ) + C \int f(g(x))g^\prime(x)\mathrm{d}x=\int f(u)du=F(u)+C=F(g(x))+C f(g(x))g(x)dx=f(u)du=F(u)+C=F(g(x))+C



4.11 Introduction to Differential Equations


Separation of Variables (分离变量法)
在这里插入图片描述
在这里插入图片描述


Chapter 5 : The Definite Integral


5.2 The Definite Integral


Definition : Riemann Sum

Consider A Partition P P P of the interval [ a , b ] [a,b] [a,b],
a = x 0 < x 1 < x 2 < ⋅ ⋅ ⋅ < x n − 1 < x n < = b ,   Δ x i = x i < x i − 1 a=x_0<x_1<x_2<···<x_{n-1}<x_n<=b,\ \Delta x_i=x_i<x_{i-1} a=x0<x1<x2<<xn1<xn<=b, Δxi=xi<xi1
在这里插入图片描述
On each subinterval [ x i − 1 , x i ] [x_{i-1},x_i] [xi1,xi] , pich a sample point x ˉ i \bar{x}_i xˉi
We call the sum R P = ∑ i = 1 n f ( x ˉ i ) Δ x i R_P=\sum\limits^n_{i=1}f(\bar{x}_i)\Delta x_i RP=i=1nf(xˉi)Δxi a Riemann Sum of f f f corresponding to the partion P P P .


Definition : Definite Integral

Let f f f be a function that is defined on the closed interval [ a , b ] [a,b] [a,b] . If lim ⁡ ∣ P ∣ → 0 ∑ i = 1 n f ( x ˉ i ) Δ x i \lim\limits_{|P|\to0}\sum\limits_{i=1}^{n}f(\bar{x}_i)\Delta x_i P0limi=1nf(xˉi)Δxi exists, we say f f f is integrable on [ a , b ] [a,b] [a,b]. Moreover, ∫ a b f ( x ) d x \int^{b}_{a}f(x)\mathrm{d}x abf(x)dx called the definite integral or Riemann integral of f f f from a a a to b b b , is then given by ∫ a b f ( x ) d x = lim ⁡ ∣ P ∣ → 0 ∑ i = 1 n f ( x ˉ i ) Δ x i \int^{b}_{a}f(x)\mathrm{d}x=\lim\limits_{|P|\to0}\sum\limits_{i=1}^{n}f(\bar{x}_i)\Delta x_i abf(x)dx=P0limi=1nf(xˉi)Δxi


Theorem A : Integrability Theorem

If f f f is bounded on [ a , b ] [a,b] [a,b] and if it is continuous there except at a finite number of points, then f f f is integrable on [ a , b ] [a,b] [a,b] .
In particular, if f f f is continuous on the whole interval, it is integrable on [ a , b ] [a,b] [a,b].


Theorem B : Interval Additive Property (区间可加性)

If f f f is integrable on an interval containing the points a , b a,b a,b and c c c, then ∫ a c f ( x ) d x = ∫ a b f ( x ) d x + ∫ b c f ( x ) d x \int^{c}_{a}f(x)\mathrm{d}x=\int^{b}_{a}f(x)\mathrm{d}x+\int^{c}_{b}f(x)\mathrm{d}x acf(x)dx=abf(x)dx+bcf(x)dx



5.3 The First Fundamental Theorem of Calculus


Theorem A : The First Fundamental Theorem of Calculus

d d x ∫ a x f ( t ) d t = f ( x ) \frac{\mathrm{d}}{\mathrm{d}x}\int^x_af(t)\mathrm{d}t=f(x) dxdaxf(t)dt=f(x)

d d x ∫ x a f ( t ) d t = − f ( x ) \frac{\mathrm{d}}{\mathrm{d}x}\int^a_xf(t)\mathrm{d}t=-f(x) dxdxaf(t)dt=f(x)


Corollary :

Suppose g ( x ) , h ( x ) ∈ [ a , b ] g(x),h(x)\in[a,b] g(x),h(x)[a,b]. Then

( ∫ h ( x ) g ( x ) f ( t ) d t ) ′ = f [ g ( x ) ] g ′ ( x ) − f [ h ( x ) ] h ( x ) ′ (\int^{g(x)}_{h(x)}f(t)\mathrm{d}t)^\prime=f[g(x)]g^\prime(x)-f[h(x)]h(x)^\prime (h(x)g(x)f(t)dt)=f[g(x)]g(x)f[h(x)]h(x)


Theorem B : Comparison Property

If f ( x ) ≤ g ( x ) f(x)\le g(x) f(x)g(x) for all x x x in [ a , b ] [a,b] [a,b], then ∫ a b f ( x ) d x ≤ ∫ a b g ( x ) d x \int^b_af(x)\mathrm{d}x\le\int^b_ag(x)\mathrm{d}x abf(x)dxabg(x)dx

but , ∣ ∫ a b f ( x ) d x ∣ ≤ ∣ ∫ a b g ( x ) d x ∣ |\int^b_af(x)\mathrm{d}x|\le|\int^b_ag(x)\mathrm{d}x| abf(x)dxabg(x)dx is not exactly true.
在这里插入图片描述

Theorem C : Boundedness Property

If f f f is integrable on [ a , b ] [a,b] [a,b] and m ≤ f ( x ) ≤ M m\le f(x)\le M mf(x)M for all x x x in [ a , b ] [a,b] [a,b] , then m ( b − a ) ≤ ∫ a b f ( x ) d x ≤ M ( a − b ) m(b-a)\le\int^b_af(x)\mathrm{d}x\le M(a-b) m(ba)abf(x)dxM(ab)
在这里插入图片描述

Theorem D : Linearity of the Definite Integral

(1) ∫ a b k f ( x ) d x = k ∫ a b f ( x ) d x \int^b_akf(x)\mathrm{d}x=k\int^b_af(x)\mathrm{d}x abkf(x)dx=kabf(x)dx

(2) ∫ a b [ f ( x ) ± g ( x ) ] d x = ∫ a b f ( x ) d x ± ∫ a b g ( x ) d x \int^b_a[f(x)\pm g(x)]\mathrm{d}x=\int^b_af(x)\mathrm{d}x\pm \int^b_ag(x)\mathrm{d}x ab[f(x)±g(x)]dx=abf(x)dx±abg(x)dx



5.4 The Second Fundamental Theorem of Calculus


Theorem A

∫ a b f ( x ) d x = F ( b ) − F ( a ) = [ F ( x ) ] a b \int^b_af(x)\mathrm{d}x=F(b)-F(a)=[F(x)]^b_a abf(x)dx=F(b)F(a)=[F(x)]ab or F ( x ) ∣ a b F(x)|^b_a F(x)ab


Theorem B : Substitution Rule for Indefinite Integrals and Definite Integrals

Let u = g ( x ) u=g(x) u=g(x)

∫ f ( g ( x ) ) g ′ ( x ) d x = ∫ f ( u ) d u = F ( u ) + C = F ( g ( x ) ) + C \int f(g(x))g^\prime(x)\mathrm{d}x=\int f(u)\mathrm{d}u=F(u)+C=F(g(x))+C f(g(x))g(x)dx=f(u)du=F(u)+C=F(g(x))+C

∫ a b f ( g ( x ) ) g ′ ( x ) d x = ∫ g ( a ) g ( b ) f ( u ) d u = [ F ( u ) ] g ( a ) g ( b ) \int^b_af(g(x))g^\prime(x)\mathrm{d}x=\int^{g(b)}_{g(a)}f(u)\mathrm{d}u=[F(u)]^{g(b)}_{g(a)} abf(g(x))g(x)dx=g(a)g(b)f(u)du=[F(u)]g(a)g(b)
在这里插入图片描述

Theorem C : Symmetry Theorem

If f f f is an even function : ∫ − a a f ( x ) d x = 2 ∫ 0 a f ( x ) d x \int^a_{-a}f(x)\mathrm{d}x=2\int^a_0f(x)\mathrm{d}x aaf(x)dx=20af(x)dx

If f f f is an odd function : ∫ − a a f ( x ) d x = 0 \int^a_{-a}f(x)\mathrm{d}x=0 aaf(x)dx=0


Theorem D : Periodic function

If f f f is a periodic function with period p p p, then :

∫ a + p b + p f ( x ) d x = ∫ a b f ( x ) d x \int^{b+p}_{a+p}f(x)\mathrm{d}x=\int^b_af(x)\mathrm{d}x a+pb+pf(x)dx=abf(x)dx

∫ a a + n p f ( x ) d x = n ∫ 0 p f ( x ) d x \int^{a+np}_af(x)\mathrm{d}x=n\int^p_0f(x)\mathrm{d}x aa+npf(x)dx=n0pf(x)dx



5.5 The Mean Value Theorem for Integrals


Definition : Average Value of a Function

If f f f is integrable on the interval [ a , b ] [a,b] [a,b], then the average value of f f f on [ a , b ] [a,b] [a,b] is 1 b − a ∫ a b f ( x ) d x \frac{1}{b-a}\int^b_af(x)\mathrm{d}x ba1abf(x)dx .


Theorem A : Mean Value Theorem for Integrals

If f f f is continuous on the inteval [ a , b ] [a,b] [a,b] , then there is a number c ∈ ( a , b ) c\in(a,b) c(a,b) such that : f ( c ) = 1 b − a ∫ a b f ( x ) d x f(c)=\frac{1}{b-a}\int^b_af(x)\mathrm{d}x f(c)=ba1abf(x)dx



Chapter 6 : Applications of the Integral


6.1 The Area of a Plane Region


Step 1: Sketch the region, find the intersection points.

Step 2: Slice it into thin pieces.

Step 3: Approximate and get a definite integral.
在这里插入图片描述


6.2 Volumes of Solids of Revolution (旋转体)


6.2.1 Method of Slicing (切片法)


V = ∫ a b π [ f ( x ) ] 2 d x V=\int^b_a\pi [f(x)]^2\mathrm{d}x V=abπ[f(x)]2dx


Washers

V = ∫ a b π [ f ( x ) ] 2 d x − ∫ a b π [ g ( x ) ] 2 d x V=\int^b_a\pi [f(x)]^2\mathrm{d}x-\int^b_a\pi [g(x)]^2\mathrm{d}x V=abπ[f(x)]2dxabπ[g(x)]2dx


6.2.2 Method of Shells (薄壳法)


V = ∫ a b 2 π x f ( x ) d x V=\int^b_a2\pi xf(x)\mathrm{d}x V=ab2πxf(x)dx



6.3 Length of a Plane Curve


Definition : A curve determined by the Parametric Equations

Let t t t be a parameter. If x x x and y y y are expressed in terms of t t t. We say that x = f ( t ) ,   y = g ( t ) ,   a ≤ t ≤ b x=f(t),\ y=g(t),\ a\le t\le b x=f(t), y=g(t), atb are parametric equations describing a curve. And the curve is said to be determined by the parametric equations x = f ( t ) x=f(t) x=f(t) and y = g ( t ) y=g(t) y=g(t).


Definition : Smooth

A place curve is smooth if it is determined by a pair of parametric equations x = f ( t ) ,   y = g ( t ) ,   a ≤ t ≤ b x=f(t),\ y=g(t),\ a\le t\le b x=f(t), y=g(t), atb, where f ′ f^\prime f and g ′ g^\prime g exist and are continuous on [ a , b ] [a,b] [a,b], and are not simultaneously (同时地) zero on ( a , b ) (a,b) (a,b).

L = ∫ a b ( d x d t ) 2 + ( d y d t ) 2 d t L=\int^b_a\sqrt{(\frac{\mathrm{d}x}{\mathrm{d}t})^2+(\frac{\mathrm{d}y}{\mathrm{d}t})^2}\mathrm{d}t L=ab(dtdx)2+(dtdy)2 dt


Differential of Arc Lenth

( d s ) 2 = ( d x ) 2 + ( d y ) 2 (\mathrm{d}s)^2=(\mathrm{d}x)^2+(\mathrm{d}y)^2 (ds)2=(dx)2+(dy)2



6.4 Work


W = ∫ a b F ( x ) d x W=\int^b_aF(x)\mathrm{d}x W=abF(x)dx



6.5 Moments (矩), Center of Mass


M = ∑ i = 1 n x i m i = ∫ a b x δ ( x ) d x M=\sum\limits^n_{i=1}x_im_i=\int^b_ax\delta(x)\mathrm{d}x M=i=1nximi=abxδ(x)dx

m = ∑ i = 1 n m i = ∫ a b δ ( x ) d x m=\sum\limits^n_{i=1}m_i=\int^b_a\delta(x)\mathrm{d}x m=i=1nmi=abδ(x)dx

x ˉ = M m = ∫ a b x δ ( x ) d x ∫ a b δ ( x ) d x \bar x=\frac{M}{m}=\frac{\int^b_ax\delta(x)\mathrm{d}x}{\int^b_a\delta(x)\mathrm{d}x} xˉ=mM=abδ(x)dxabxδ(x)dx



Chapter 7 : Techniques of Intergration and Differential Equations


7.2 Integration by Parts


∫ u ( x ) v ′ ( x ) d x = u ( x ) v ( x ) − ∫ v ( x ) u ′ ( x ) d x + C \int u(x)v^\prime(x)\mathrm dx=u(x)v(x)-\int v(x)u^\prime(x)\mathrm dx+C u(x)v(x)dx=u(x)v(x)v(x)u(x)dx+C

∫ a b u ( x ) v ′ ( x ) d x = [ u ( x ) v ( x ) ] a b − ∫ a b v ( x ) u ′ ( x ) d x \int^b_au(x)v^\prime(x)\mathrm dx=[u(x)v(x)]^b_a-\int^b_av(x)u^\prime(x)\mathrm dx abu(x)v(x)dx=[u(x)v(x)]ababv(x)u(x)dx


∫ 0 π 2 sin ⁡ n x d x = n − 1 n ∫ 0 π 2 sin ⁡ n − 2 x d x \int^{\frac{\pi}{2}}_0\sin^nx\mathrm dx=\frac{n-1}{n}\int^{\frac{\pi}{2}}_0\sin^{n-2}x\mathrm dx 02πsinnxdx=nn102πsinn2xdx



7.3 Some Trigonometric Integrals


Type 1 : ∫ sin ⁡ n x d x   ,   ∫ cos ⁡ n x d x \int\sin^nx\mathrm dx\ ,\ \int\cos^nx\mathrm dx sinnxdx , cosnxdx

  1. When n n n is odd positive integer : Taking out either the factor sin ⁡ x \sin x sinx or cos ⁡ x \cos x cosx at first, then use the identity sin ⁡ 2 x + cos ⁡ 2 x = 1 \sin^2x+\cos^2x=1 sin2x+cos2x=1
  2. When n n n is even positive integer : sin ⁡ 2 x = 1 − cos ⁡ 2 x 2 \sin^2x=\frac{1-\cos2x}{2} sin2x=21cos2x  or  cos ⁡ 2 x = 1 + cos ⁡ 2 x 2 \cos^2x=\frac{1+\cos2x}{2} cos2x=21+cos2x

Type 2 : ∫ sin ⁡ m x cos ⁡ n x d x \int\sin^mx\cos^nx\mathrm dx sinmxcosnxdx

  1. If either m m m or n n n is an odd positive integer : factor out sin ⁡ x \sin x sinx or cos ⁡ x \cos x cosx and use the identity sin ⁡ 2 x + cos ⁡ 2 x = 1 \sin^2x+\cos^2x=1 sin2x+cos2x=1
  2. If both m m m or n n n are even positive integers : sin ⁡ 2 x = 1 − cos ⁡ 2 x 2 \sin^2x=\frac{1-\cos2x}{2} sin2x=21cos2x  or  cos ⁡ 2 x = 1 + cos ⁡ 2 x 2 \cos^2x=\frac{1+\cos2x}{2} cos2x=21+cos2x

Type 3 : ∫ sin ⁡ m x cos ⁡ n x d x   ,   ∫ sin ⁡ m x cos ⁡ n x d x   ,   ∫ cos ⁡ m x cos ⁡ n x d x \int\sin mx\cos nx\mathrm dx\ ,\ \int\sin mx\cos nx\mathrm dx\ ,\ \int\cos mx\cos nx\mathrm dx sinmxcosnxdx , sinmxcosnxdx , cosmxcosnxdx

  1. sin ⁡ m x cos ⁡ n x = 1 2 [ sin ⁡ ( m + n ) x + sin ⁡ ( m − n ) x ] \sin mx\cos nx=\frac{1}{2}[\sin(m+n)x+\sin(m-n)x] sinmxcosnx=21[sin(m+n)x+sin(mn)x]
  2. sin ⁡ m x sin ⁡ n x = − 1 2 [ cos ⁡ ( m + n ) x − cos ⁡ ( m − n ) x ] \sin mx\sin nx=-\frac{1}{2}[\cos(m+n)x-\cos(m-n)x] sinmxsinnx=21[cos(m+n)xcos(mn)x]
  3. cos ⁡ m x cos ⁡ n x = 1 2 [ cos ⁡ ( m + n ) x + cos ⁡ ( m − n ) x ] \cos mx\cos nx=\frac{1}{2}[\cos(m+n)x+\cos(m-n)x] cosmxcosnx=21[cos(m+n)x+cos(mn)x]


7.4 Rationalizing Substitutions


Type 1 : a x + b n \sqrt[n]{ax+b} nax+b 在这里插入图片描述
Type 2 : a 2 − x 2   ,   a 2 + x 2   ,   x 2 − a 2 \sqrt{a^2-x^2}\ ,\ \sqrt{a^2+x^2}\ ,\ \sqrt{x^2-a^2} a2x2  , a2+x2  , x2a2 在这里插入图片描述


7.7 First-Order Linear Differential Equations


A differential equation in the form d y d x + P ( x ) y = Q ( x ) \frac{\mathrm dy}{\mathrm dx}+P(x)y=Q(x) dxdy+P(x)y=Q(x) is called a first-order linear differential equation where P ( x ) P(x) P(x) and Q ( x ) Q(x) Q(x) are functions of x x x only. For a first-order linear differential equation function I ( x ) = e ∫ P ( x ) d x I(x)=e^{\int P(x)\mathrm dx} I(x)=eP(x)dx is called the integrating factor.


y = 1 I ( x ) ⋅ ∫ I ( x ) Q ( x ) d x y=\frac{1}{I(x)}\cdot\int I(x)Q(x)\mathrm dx y=I(x)1I(x)Q(x)dx


A equation in the form d y d x + P ( x ) y = Q ( x ) y n \frac{\mathrm dy}{\mathrm dx}+P(x)y=Q(x)y^n dxdy+P(x)y=Q(x)yn
Let u = y 1 − n u=y^{1-n} u=y1n
d u d x + ( 1 − n ) P ( x ) u = ( 1 − n ) Q ( x ) \frac{\mathrm du}{\mathrm dx}+(1-n)P(x)u=(1-n)Q(x) dxdu+(1n)P(x)u=(1n)Q(x)


A equation in the form d y d x + P ( x ) e y = Q ( x ) \frac{\mathrm dy}{\mathrm dx}+P(x)e^y=Q(x) dxdy+P(x)ey=Q(x)
Let u = e − y u=e^{-y} u=ey



Chapter 8 : Improper Integrals


8.1 Infinite Limits of Integration


8.1.1 One Infinite Limit


∫ − ∞ b f ( x ) d x = lim ⁡ a → − ∞ ∫ a b f ( x ) d x \int^b_{-\infty}f(x)\mathrm dx=\lim\limits_{a\to-\infty}\int^b_af(x)\mathrm dx bf(x)dx=alimabf(x)dx

∫ a ∞ f ( x ) d x = lim ⁡ b → ∞ ∫ a b f ( x ) d x \int^{\infty}_af(x)\mathrm dx=\lim\limits_{b\to\infty}\int^b_af(x)\mathrm dx af(x)dx=blimabf(x)dx


If the limits on the right exist and have finite values, then we say that the corresponding improper integrals converge (收敛) and have those values. Otherwise, the integrals are said to diverge (发散).


8.1.2 Both Limits Infinite


∫ − ∞ ∞ f ( x ) d x \int^\infty_{-\infty}f(x)\mathrm dx f(x)dx


If both ∫ − ∞ 0 f ( x ) d x \int^0_{-\infty}f(x)\mathrm dx 0f(x)dx  and   ∫ 0 ∞ f ( x ) d x \ \int^\infty_0f(x)\mathrm dx  0f(x)dx converge, then ∫ − ∞ ∞ f ( x ) d x \int^\infty_{-\infty}f(x)\mathrm dx f(x)dx is said to converge and have value ∫ − ∞ ∞ f ( x ) d x = ∫ − ∞ 0 f ( x ) d x + ∫ 0 ∞ f ( x ) d x \int^\infty_{-\infty}f(x)\mathrm dx=\int^0_{-\infty}f(x)\mathrm dx+\int^\infty_0f(x)\mathrm dx f(x)dx=0f(x)dx+0f(x)dx . Otherwise, ∫ − ∞ ∞ f ( x ) d x \int^\infty_{-\infty}f(x)\mathrm dx f(x)dx diverges.





洋洋洒洒 3w字,努力将所有知识点记了下来,也不知道会有多大用处,但如果对你起到作用了的话,请务必 关注+点赞+收藏 感激不尽。临表涕零,不知所言。

  • 8
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SP FA

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值