各位西交利物浦的同学们大家好啊!期末在即,为了不挂科,我费了好大力气,尽自己所能的整理了这些提纲。内容粗浅,如果大家能看到,并且为大家的学习提供了一点点的帮助,那真的再好不过了。哦还有,我是按 MTH013 的课程进行整理的,由于课程不同,可能知识点有所欠缺,欢迎各位大佬在评论区补充,本人才疏学浅,若内容有误,欢迎大家指正。^_^
本博客仅供学习交流使用,侵删。
文章目录
- Chapter 1 : Preliminaries
- Chapter 2 : Limits
- Chapter 3 : The Derivative
- 3.2 The derivative
- 3.3 Rules for Finding Derivatives
- 3.4 Derivatives of Trigonometric Function
- 3.5 The Chain Rule
- 3.6 Derivatives of Inverse Functions
- 3.7 Higher-order Derivatives
- 3.8 Implicit Differentiation (隐函数求导法)
- 3.9 Related Rates (相关变化率问题)
- 3.10 Derivatives of Exponential and Logarithmic Functions
- 3.11 Derivatives of Inverse Trigonometric Functions
- 3.12 Differentials and Approximations (微分和近似)
- Chapter 4 : Applications of the Derivative
- Chapter 5 : The Definite Integral
- Chapter 6 : Applications of the Integral
- Chapter 7 : Techniques of Intergration and Differential Equations
- Chapter 8 : Improper Integrals
Chapter 1 : Preliminaries
1.5 Functions and Their Graphs
1.5.1 Definition of Functions
Let D D D and R R R be nonempty sets. A function from D D D to R R R is a rule f f f of correspondence that assigns a unique element y ∈ R y \in R y∈R to each element x ∈ D x \in D x∈D
x is called the independent variable
y is called the dependent variable
the set
D
D
D is called the domain of the function and denoted by
D
(
f
)
D(f)
D(f) or
D
f
D_f
Df
the set of all the values that y can take is called the range of the function and symbolically
R
(
f
)
R(f)
R(f) or
R
f
R_f
Rf
1.5.2 Some Special features of functions
- Even Functions and Odd Funtions
- Monotonic Funtions
1.6 Operations on Functions
1.6.1 Sums, Differences, Products, Quotients, Powers
( f ± g ) ( x ) = f ( x ) ± g ( x ) , x ∈ D (f\pm g)(x) = f(x) \pm g(x)\ ,\ x \in D (f±g)(x)=f(x)±g(x) , x∈D
( f ⋅ g ) ( x ) = f ( x ) ⋅ g ( x ) , x ∈ D (f \cdot g)(x) = f(x) \cdot g(x)\ ,\ x \in D (f⋅g)(x)=f(x)⋅g(x) , x∈D
( f g ) ( x ) = f ( x ) g ( x ) , x ∈ D (\dfrac{f}{g})(x) = \dfrac{f(x)}{g(x)}\ ,\ x\in D (gf)(x)=g(x)f(x) , x∈D and g ( x ) ≠ 0 g(x) \ne 0 g(x)=0
f n ( x ) = [ f ( x ) ] n , n = 1 , 2 , 3... , x ∈ D f^n(x) = [f(x)]^n\ ,\ n=1,2,3...\ ,\ x\in D fn(x)=[f(x)]n , n=1,2,3... , x∈D
1.6.2 Composition of Functions
denoted by g ( g ( x ) ) g(g(x)) g(g(x)) or ( g ∘ f ) ( x ) (g\circ f)(x) (g∘f)(x)
the domain of the composite function is : D ( g ∘ f ) = { x ∣ x ∈ D ( f ) , f ( x ) ∈ D ( g ) } D(g\circ f)=\{x\ |\ x\in D(f), f(x) \in D(g)\} D(g∘f)={x ∣ x∈D(f),f(x)∈D(g)}
1.6.3 Inverse Functions
If the function f f f is one to one, then the function $f^{-1} called the inverse of f f f .
If y = f ( x ) , t h e n x = f − 1 ( y ) y = f(x), then\ x = f^{-1}(y) y=f(x),then x=f−1(y)
The domains and ranges of f f f and f − 1 f^{-1} f−1 are also reversed :
D ( f − 1 ) = R ( f ) ; R ( f − 1 ) = D ( f ) D(f^{-1}) = R(f);\ \ R(f^{-1}) = D(f) D(f−1)=R(f); R(f−1)=D(f)
Warning:
f − 1 ( x ) ≠ [ f ( x ) ] − 1 f^{-1}(x) \ne [f(x)]^{-1} f−1(x)=[f(x)]−1
The Graph of
y
=
f
−
1
(
x
)
\ y=f^{-1}(x)
y=f−1(x)
Theorem A : A sufficient condition (充分条件) for the Existence of Inverse Function
If f f f is a monotonic funtion on its domain, then f f f has an inverse. And f f f and f − 1 f^{-1} f−1 have the same kind of monotonicity.
1.7 Exponential and Logarithmic Functions (指对函数)
Theorem A : Properties of Exponents. (指数运算性质)
If a > 0 , b > 0 a > 0,\ b>0 a>0, b>0 and x x x and y y y are real numbers, then
(1) a x a y = a x + y a^xa^y = a^{x+y} axay=ax+y (2) a x a y = a x − y \dfrac{a^x}{a^y} = a^{x-y} ayax=ax−y
(3) ( a x ) y = a x y (a^x)^y = a^{xy} (ax)y=axy (4) a − x = 1 a x a^{-x} = \dfrac{1}{a^x} a−x=ax1
(5) ( a b ) x = a x b x (ab)^x = a^xb^x (ab)x=axbx (6) ( a b ) x = a x b x (\dfrac{a}{b})^x = \dfrac{a^x}{b^x} (ba)x=bxax
Theorem B : Properties of Logarithms
If a , b , c a,\ b,\ c a, b, c are positive numbers, where a ≠ 1 a \ne 1 a=1 , and if x x x is any real number, then
(1) log a 1 = 0 \log_a1 = 0 loga1=0 (2) log a b c = log a b + log a c \log_abc = \log_ab+\log_ac logabc=logab+logac
(3) log a b c = log a b − log a c \log_a\dfrac{b}{c} = \log_ab - \log_ac logacb=logab−logac (4) log a b x = x log a b \log_ab^x = x\log_ab logabx=xlogab
(5) log a a = 1 \log_aa=1 logaa=1 (6) a log a b = b a^{\log_ab} = b alogab=b
Base changing formula for logarithms
log a b = log c b log c a \log_ab = \frac{\log_cb}{\log_ca} logab=logcalogcb
1.8 The Trigonometric Functions (三角函数)
Important operations :
\text{\red{Important operations :}}
Important operations :
Identities
(1) sin 2 x + cos 2 x = 1 \sin^2x+\cos^2x=1 sin2x+cos2x=1 (2) sin 2 x = sin x cos x \sin2x=\sin x\cos x sin2x=sinxcosx
(3) 1 + tan 2 x = s e c 2 x 1+\tan^2x=sec^2x 1+tan2x=sec2x (4) c o t 2 x + 1 = c s c 2 x cot^2x+1=csc^2x cot2x+1=csc2x
Confunction identities
(1) sin ( π 2 − x ) = cos x \sin(\frac{\pi}{2}-x)=\cos x sin(2π−x)=cosx (2) cos ( π 2 − x ) = sin x \cos(\frac{\pi}{2}-x)=\sin x cos(2π−x)=sinx
(3) tan ( π 2 − x ) = cot x \tan(\frac{\pi}{2}-x)=\cot x tan(2π−x)=cotx
Addition identities
(1) sin ( x + y ) = sin x cos y + cos x sin y \sin(x+y)=\sin x\cos y+\cos x\sin y sin(x+y)=sinxcosy+cosxsiny
(2) cos ( x + y ) = cos x cos y − sin x sin y \cos(x+y)=\cos x\cos y-\sin x\sin y cos(x+y)=cosxcosy−sinxsiny
(3) t a n ( x + y ) = tan x + tan y 1 − tan x tan y tan(x+y)=\frac{\tan x+\tan y}{1-\tan x\tan y} tan(x+y)=1−tanxtanytanx+tany
Double-angle identities
(1) sin 2 x = 2 sin x cos x \sin2x=2\sin x\cos x sin2x=2sinxcosx
(2) cos 2 x = cos 2 x − sin 2 x = 2 cos 2 x − 1 = 1 − 2 sin 2 x \cos2x=\cos^2x-\sin^2x=2\cos^2x-1=1-2\sin^2 x cos2x=cos2x−sin2x=2cos2x−1=1−2sin2x
Sum identities
(1) sin x + sin y = 2 sin ( x + y 2 ) cos ( x − y 2 ) \sin x+\sin y=2\sin(\frac{x+y}{2})\cos(\frac{x-y}{2}) sinx+siny=2sin(2x+y)cos(2x−y)
(2) cos x + cos y = 2 cos ( x + y 2 ) c o s ( x − y 2 ) \cos x+\cos y=2\cos(\frac{x+y}{2})cos(\frac{x-y}{2}) cosx+cosy=2cos(2x+y)cos(2x−y)
Product identities
(1) sin x sin y = − 1 2 [ cos ( x + y ) − cos ( x − y ) ] \sin x\sin y=-\frac{1}{2}[\cos(x+y)-\cos(x-y)] sinxsiny=−21[cos(x+y)−cos(x−y)]
(2) cos x cos y = 1 2 [ c o s ( x + y ) + c o s ( x − y ) ] \cos x\cos y=\frac{1}{2}[cos(x+y)+cos(x-y)] cosxcosy=21[cos(x+y)+cos(x−y)]
(3) sin x cos y = 1 2 [ sin ( x + y ) + sin ( x − y ) ] \sin x\cos y=\frac{1}{2}[\sin(x+y)+\sin(x-y)] sinxcosy=21[sin(x+y)+sin(x−y)]
1.9 The Inverse Trigonometric Functions
(1)
sin
(
cos
−
1
x
)
=
1
−
x
2
\sin(\cos^{-1}x)=\sqrt{1-x^2}
sin(cos−1x)=1−x2
(2) cos ( sin − 1 x ) = 1 − x 2 \cos(\sin^{-1}x)=\sqrt{1-x^2} cos(sin−1x)=1−x2
(3) sec ( tan − 1 x ) = 1 + x 2 \sec(\tan^{-1}x)=\sqrt{1+x^2} sec(tan−1x)=1+x2
Chapter 2 : Limits
Calculus is the study of limits
2.1 Introduction to Limits
2.1.1 Definition
To say that lim x → ∞ f ( x ) = L \lim\limits_{x \to \infty}f(x)=L x→∞limf(x)=L means that when x x x is near but different from c c c then f ( x ) f(x) f(x) is near L L L
There is no limit :
(1) At a jump
(2) Too many wiggles
2.1.2 One-Sided Limits
Theorem A
lim x → c f ( x ) = L \lim\limits_{x \to c}f(x)=L x→climf(x)=L if and only if lim x → c − = L \lim\limits_{x\to c^-}=L x→c−lim=L and lim x → c + = L \lim\limits_{x\to c^+}=L x→c+lim=L
2.2 Rigorous Study of Limits
Definition : Intuitive Meaning of Limit (极限的直观解释)
lim x → c f ( x ) = L \lim\limits_{x\to c}f(x)=L x→climf(x)=L means when x x x is near but different from c c c then f(x) is near L L L
Rigorous Definition of Limit :
To say that lim x → c f ( x ) = L \lim\limits_{x\to c}f(x)=L x→climf(x)=L means that for each given ϵ > 0 \epsilon > 0 ϵ>0 there is a corresponding δ > 0 \delta > 0 δ>0 such that 0 < ∣ x − c ∣ < δ 0<|x-c|<\delta 0<∣x−c∣<δ implies ∣ f ( x ) − L ∣ < ϵ |f(x)-L|<\epsilon ∣f(x)−L∣<ϵ.
2.3 Limit Theorems
Theorem A : Main Limit Theorem
Let n n n be a positive integer, k k k be a constant, f f f and g g g be functions that have limits at c. Then :
(1) lim x → c k = k \lim\limits_{x\to c}k = k x→climk=k (2) lim x → c x = c \lim\limits_{x\to c}x = c x→climx=c
If lim x → c f ( x ) = A , lim x → c g ( x ) = B \lim\limits_{x\to c}f(x) = A,\ \lim\limits_{x\to c}g(x) = B x→climf(x)=A, x→climg(x)=B, then :
(3) lim x → c k f ( x ) = k lim x → c f ( x ) = k A \lim\limits_{x\to c}kf(x) = k\lim\limits_{x\to c}f(x) = kA x→climkf(x)=kx→climf(x)=kA
(4) lim x → c [ f ( x ) ± g ( x ) ] = lim x → c f ( x ) ± lim x → c g ( x ) = A ± B \lim\limits_{x\to c}[f(x)\pm g(x)] = \lim\limits_{x\to c}f(x)\pm \lim\limits_{x\to c}g(x)=A\pm B x→clim[f(x)±g(x)]=x→climf(x)±x→climg(x)=A±B
(5) lim x → c [ f ( x ) ⋅ g ( x ) ] = lim x → c f ( x ) ⋅ lim x → c g ( x ) = A B \lim\limits_{x\to c}[f(x)\cdot g(x)]=\lim\limits_{x\to c}f(x)\cdot\lim\limits_{x\to c}g(x)=AB x→clim[f(x)⋅g(x)]=x→climf(x)⋅x→climg(x)=AB
(6) lim x → c f ( x ) g ( x ) = lim x → c f ( x ) lim x → c g ( x ) = A B , p r o v i d e d lim x → c = B ≠ 0 \lim\limits_{x\to c}\frac{f(x)}{g(x)}=\frac{\lim\limits_{x\to c}f(x)}{\lim\limits_{x\to c}g(x)}=\frac{A}{B},\ provided\ \lim\limits_{x\to c}=B\ne0 x→climg(x)f(x)=x→climg(x)x→climf(x)=BA, provided x→clim=B=0
Corollary :
(7) lim x → c [ f ( x ) ] n = [ lim x → c f ( x ) ] n = A n \lim\limits_{x\to c}[f(x)]^n=[\lim\limits_{x\to c}f(x)]^n=A^n x→clim[f(x)]n=[x→climf(x)]n=An,
(8) lim x → c f ( x ) n = lim x → c f ( x ) n = A n \lim\limits_{x\to c} \sqrt[n]{f(x)}=\sqrt[n]{\lim\limits_{x\to c}f(x)}=\sqrt[n]A x→climnf(x)=nx→climf(x)=nA , provided A > 0 A>0 A>0 whien n is even .
Theorem B : Substitution Theorem (代入法)
If f f f id a polynomial function or a rational function, then : lim x → c f ( x ) = f ( c ) \lim\limits_{x\to c}f(x)=f(c) x→climf(x)=f(c)
Theorem C : Squeeze Theorem (夹逼定理)
Let f f f, g g g and h h h be functions satisfying f ( x ) ≤ g ( x ) ≤ h ( x ) f(x)\le g(x)\le h(x) f(x)≤g(x)≤h(x) for all x x x near c c c, except possibly at c c c. If lim x → c f ( x ) = lim x → c h ( x ) = L \lim\limits_{x\to c}f(x)=\lim\limits_{x\to c}h(x)=L x→climf(x)=x→climh(x)=L, then lim x → c g ( x ) = L \lim\limits_{x\to c}g(x)=L x→climg(x)=L
Important Limits : \text{\red{Important Limits :}} Important Limits :
(1) lim x → 0 x cos 1 x = 0 \lim\limits_{x\to 0}x\cos\frac{1}{x}=0 x→0limxcosx1=0 lim x → ∞ 1 x cos x = 0 \lim\limits_{x\to\infty}\frac{1}{x}\cos x=0 x→∞limx1cosx=0
(2) lim x → 0 1 x sin x = 1 \lim\limits_{x\to 0}\frac{1}{x}\sin x=1 x→0limx1sinx=1 lim x → ∞ x sin 1 x = 1 \lim\limits_{x\to\infty}x\sin\frac{1}{x}=1 x→∞limxsinx1=1
(3) lim x → 0 1 − cos x x = 0 \lim\limits_{x\to0}\frac{1-\cos x}{x}=0 x→0limx1−cosx=0
2.4 Limits at Infinity, Infinite Limits
Limits at Infinity :
lim x → ∞ 1 x = 0 \lim\limits_{x\to\infty}\frac{1}{x}=0 x→∞limx1=0 lim x → − ∞ 1 x = 0 \lim\limits_{x\to-\infty}\frac{1}{x}=0 x→−∞limx1=0
Infinite Limits :
lim x → 0 + 1 x = ∞ \lim\limits_{x\to0^+}\frac{1}{x}=\infty x→0+limx1=∞ lim x → 0 − 1 x = − ∞ \lim\limits_{x\to0^-}\frac{1}{x}=-\infty x→0−limx1=−∞
2.5 Limits Involving Trigonometric Functions
Theorem A : Limits of Trigonometric Function
(1) lim x → c sin x = sin c \lim\limits_{x\to c}\sin x=\sin c x→climsinx=sinc (2) lim x → c cos x = cos c \lim\limits_{x\to c}\cos x=\cos c x→climcosx=cosc
(3) lim x → c tan x = tan c \lim\limits_{x\to c}\tan x=\tan c x→climtanx=tanc (4) lim x → c cot x = cot c \lim\limits_{x\to c}\cot x=\cot c x→climcotx=cotc
(5) lim x → c sec x = sec c \lim\limits_{x\to c}\sec x=\sec c x→climsecx=secc (6) lim x → c csc x = csc c \lim\limits_{x\to c}\csc x=\csc c x→climcscx=cscc
2.6 Natural Exponential, Natural Log
Theorem A : Limits of Exponential Functions
-
lim x → c a x = a c \lim\limits_{x\to c}a^x=a^c x→climax=ac
-
If 0 < a < 1 0<a<1 0<a<1, then lim x → c a x = 0 , lim x → − ∞ a x = ∞ \lim\limits_{x\to c}a^x=0,\ \lim\limits_{x\to-\infty}a^x=\infty x→climax=0, x→−∞limax=∞
-
If a > 1 a>1 a>1, then lim x → ∞ a x = ∞ , lim x → − ∞ a x = 0 \lim\limits_{x\to\infty}a^x=\infty, \lim\limits_{x\to-\infty}a^x=0 x→∞limax=∞,x→−∞limax=0
Theorem B : Limits for Inverse Functions
If f f f has an inverse and lim x → a f ( x ) = f ( a ) = c \lim\limits_{x\to a}f(x)=f(a)=c x→alimf(x)=f(a)=c, then :
lim x → c f − 1 ( x ) = f − 1 ( c ) = a \lim\limits_{x\to c}f^{-1}(x)=f^{-1}(c)=a x→climf−1(x)=f−1(c)=a
Theorem C : Limits of Logarithmic Functions
-
If a > 0 ( a ≠ 1 ) a>0\ (a\ne1) a>0 (a=1) and c > 0 c>0 c>0, then lim x → c l o g a x = l o g a c \lim\limits_{x\to c}log_ax=log_ac x→climlogax=logac
-
If a > 1 a>1 a>1, then lim x → ∞ l o g a x = ∞ , lim x → 0 + l o g a x = − ∞ \lim\limits_{x\to\infty}log_ax=\infty,\ \lim\limits_{x\to0^+}log_ax=-\infty x→∞limlogax=∞, x→0+limlogax=−∞
-
If 0 < a < 1 0<a<1 0<a<1, then lim x → ∞ l o g a x = − ∞ , lim x → 0 + l o g a x = ∞ \lim\limits_{x\to\infty}log_ax=-\infty,\ \lim\limits_{x\to0^+}log_ax=\infty x→∞limlogax=−∞, x→0+limlogax=∞
Theorem D : Limits of Inverse Trig. Functions
-
lim x → c arcsin x = arcsin c , c ∈ ( − 1 , 1 ) \lim\limits_{x\to c}\arcsin x=\arcsin c,\ c\in(-1,1) x→climarcsinx=arcsinc, c∈(−1,1)
-
lim x → c arccos x = arccos c , c ∈ ( − 1 , 1 ) \lim\limits_{x\to c}\arccos x=\arccos c,\ c\in(-1,1) x→climarccosx=arccosc, c∈(−1,1)
-
lim x → c arctan x = arctan c , c ∈ ( − ∞ . ∞ ) \lim\limits_{x\to c}\arctan x=\arctan c,\ c\in(-\infty.\infty) x→climarctanx=arctanc, c∈(−∞.∞)
-
lim x → ∞ arctan x = π 2 , lim x → − ∞ arctan x = − π 2 \lim\limits_{x\to\infty}\arctan x=\frac{\pi}{2},\ \lim\limits_{x\to-\infty}\arctan x=-\frac{\pi}{2} x→∞limarctanx=2π, x→−∞limarctanx=−2π
Continuous Compound Interest (连续复利问题)
lim x → ± ∞ ( 1 + 1 x ) x = e \lim\limits_{x\to\pm\infty}(1+\frac{1}{x})^x=e x→±∞lim(1+x1)x=e
lim x → 0 ( 1 + x ) 1 x = e \lim\limits_{x\to0}(1+x)^\frac{1}{x}=e x→0lim(1+x)x1=e
lim x → ∞ ( 1 + r x ) x = e r \lim\limits_{x\to\infty}(1+\frac{r}{x})^x=e^r x→∞lim(1+xr)x=er
*Hyperbolic Functions
(1) sinh x = e x − e − x 2 \sinh x=\frac{e^x-e^{-x}}{2} sinhx=2ex−e−x (2) cosh x = e x + e − x 2 \cosh x=\frac{e^x+e^{-x}}{2} coshx=2ex+e−x
(3) tanh x = sinh x cosh x \tanh x=\frac{\sinh x}{\cosh x} tanhx=coshxsinhx (4) coth x = cosh x sinh x \coth x=\frac{\cosh x}{\sinh x} cothx=sinhxcoshx
(5) s e c h x = 1 cosh x sech x=\frac{1}{\cosh x} sechx=coshx1 (6) c s c h x = 1 sinh x cschx=\frac{1}{\sinh x} cschx=sinhx1
对于 lim x → 0 f ( x ) g ( x ) \lim\limits_{x\to 0}\frac{f(x)}{g(x)} x→0limg(x)f(x),若分子次数低于分母,极限为0,分子次数高于分母,极限不存在。
lim x → c f ( x ) g ( x ) = A \lim\limits_{x\to c}\frac{f(x)}{g(x)}=A x→climg(x)f(x)=A , lim x → c g ( x ) = 0 ⇒ lim x → c f ( x ) = 0 \lim\limits_{x\to c}g(x)=0 \Rightarrow\lim\limits_{x\to c}f(x)=0 x→climg(x)=0⇒x→climf(x)=0
2.7 Continuity of Functions
2.7.1 Continuity and Discontinuity
Let f f f be defined on an open interval containing c . c. c. We say that f f f is continuous at c c c if lim x → c f ( x ) = f ( c ) \lim\limits_{x\to c}f(x)=f(c) x→climf(x)=f(c). Or equivalently, lim h → 0 f ( c + h ) = f ( c ) . \lim\limits_{h\to0}f(c+h)=f (c). h→0limf(c+h)=f(c).
Theorem A : Continuity of Polynomial and Rational Functions
A polynomial function is continuous at every real number c c c. A rational function is continuous at every real number c c c in its domain, that is, everywhere except where it denominator is zero.
Theorem B : Continuity of Absolute Value and nth Root functions
The absolute value function is continuous at every real number c c c. If n n n is odd, the nth-root function is continuous at every real number c c c, if n is even, the nth-root function is continuous at every positive real number c c c.
Theorem C : Continuity under Function Operations
If f f f and g g g are continuous at c c c, then so are k f kf kf , f + g f+g f+g , f − g f-g f−g , f ⋅ g f\cdot g f⋅g , f g \frac{f}{g} gf , f n f^n fn , and f n \sqrt[n]f nf.
Theorem D : Continuity of Transcendental Functions
The functions
sin x , cos x , tan x , cot x , sec x , csc x \sin x,\ \cos x,\ \tan x,\ \cot x,\ \sec x,\ \csc x sinx, cosx, tanx, cotx, secx, cscx
sin − 1 x , cos − 1 x , tan − 1 x , cot − 1 x \sin^{-1} x,\ \cos^{-1} x,\ \tan^{-1} x,\ \cot^{-1} x sin−1x, cos−1x, tan−1x, cot−1x
a x , log a x a^x,\ \log_ax ax, logax
are continuous at every point in the interior of their domain.
Theorem E : Continuity of composite function
If g g g is continuous at c c c and f f f is continuous at g ( c ) g(c) g(c), then the composite f ∘ g f\circ g f∘g is continuous at c c c.
2.7.2 Removable and Nonremovable
A point of discontinuity is called removable if the function can be defined or redefined at c c c so as to make the function continuous. That is, if lim x → c f ( x ) \lim\limits_{x\to c}f(x) x→climf(x) exists, but f ( c ) f(c) f(c) is not defined, or lim x → c f ( x ) \lim\limits_{x\to c}f(x) x→climf(x) exists and f ( c ) f(c) f(c) is defined, but lim x → c f ( x ) ≠ f ( C ) \lim\limits_{x\to c}f(x)\ne f(C) x→climf(x)=f(C), then c c c is called removable.
Otherwise, a point of discontinuity c c c called nonremovable
Definition : Continuity on an Interval
The function f f f is right continuous at a a a if lim x → a + f ( x ) = f ( a ) \lim\limits_{x\to a^+}f(x)=f(a) x→a+limf(x)=f(a).
The function f f f is left continuous at a a a if lim x → a − f ( x ) = f ( a ) \lim\limits_{x\to a^-}f(x)=f(a) x→a−limf(x)=f(a).
We say f f f is continuous on the closed interval [ a , b ] [a,b] [a,b] if it is : (1) continuous on ( a , b ) (a,b) (a,b), (2) right continuous at a a a, (3) left continuous at b b b.
Theorem F : Intermediate Value Theorem (介值定理)
Let f f f be a function defined on [ a , b ] [a,b] [a,b] , and let W W W be a number between f ( a ) f(a) f(a) and f ( b ) f(b) f(b) . If f f f is continuous on [ a , b ] [a,b] [a,b], then there is at least one number c c c between a a a and b b b such that f ( c ) = W f(c)=W f(c)=W.
Theorem G : Zero Point Theorem (零点定理)
If f f f is continuous on [ a , b ] [a,b] [a,b] , and if f ( a ) f(a) f(a) and f ( b ) f(b) f(b) are nonzero and have opposite signs, then there is at least one solution of the equation f ( x ) = 0 f(x)=0 f(x)=0 in the interval ( a , b ) (a,b) (a,b).
2.8 Infinitesimals and Order of Infinitesimals (无穷小以及无穷小的阶)
2.8.1 The concept of Infinitesimal
If a function f ( x ) → 0 f(x)\to0 f(x)→0 as x → c x\to c x→c, then f ( x ) f(x) f(x) is called an infinitesimal as x → c x\to c x→c
2.8.2 Properties of Infinitesimals
Theorem 1 :
lim x → c f ( x ) = L \lim\limits_{x\to c}f(x)=L x→climf(x)=L if and only if lim x → c ( f ( x ) − L ) = 0 \lim\limits_{x\to c}(f(x)-L)=0 x→clim(f(x)−L)=0, that is, f ( x ) − L f(x)-L f(x)−L is an infinitesimal as x → c x\to c x→c.
Theorem 2 :
(1) The sum of finite number of infinitesimals is an infinitesimal.
(2) The product of finite number of infinitesimals is an infinitesimal.
(3) The product of an infinitesimal and a bounded function is an infinitesimal.
2.8.3 Orders of Infinitesimals
Let lim x → c α ( x ) = 0 \lim\limits_{x\to c}\alpha(x)=0 x→climα(x)=0 and lim x → c β ( x ) = 0 \lim\limits_{x\to c}\beta(x)=0 x→climβ(x)=0
(1) If lim x → c β ( x ) α ( x ) = 0 \lim\limits_{x\to c}\frac{\beta(x)}{\alpha(x)}=0 x→climα(x)β(x)=0, then we say that β ( x ) \beta(x) β(x) is an infinitesimal of higher order than α ( x ) \alpha(x) α(x), denoted by β ( x ) = o ( α ( x ) ) \beta(x)=o(\alpha(x)) β(x)=o(α(x)) as x → c x\to c x→c
(2) If lim x → c β x α ( x ) = 1 \lim\limits_{x\to c}\frac{\beta{x}}{\alpha(x)}=1 x→climα(x)βx=1, then we say that β ( x ) \beta(x) β(x) and α ( x ) \alpha(x) α(x) are equivalent infinitesimals, denoted by β ( x ) ∼ α ( x ) \beta(x)\sim\alpha(x) β(x)∼α(x) or α ( x ) ∼ β ( x ) \alpha(x)\sim\beta(x) α(x)∼β(x) as x → c x\to c x→c
as x → 0 x\to0 x→0 :
x ∼ sin x ∼ tan x ∼ arcsin x ∼ arctan x ∼ ln ( 1 + x ) ∼ e x − 1 x\sim\sin x\sim\tan x\sim\arcsin x\sim\arctan x\sim\ln(1+x)\sim e^x-1 x∼sinx∼tanx∼arcsinx∼arctanx∼ln(1+x)∼ex−1
1 − c o s x ∼ x 2 2 1-cosx\sim\frac{x^2}{2} 1−cosx∼2x2
( 1 + x ) α − 1 ∼ α x (1+x)^\alpha-1\sim\alpha x (1+x)α−1∼αx
2.8.4 Substitution of equivalent Infinitesimals
Theorem 3
Suppose that α 1 ( x ) ∼ α 2 ( x ) , β 1 ( x ) ∼ β 2 ( x ) \alpha_1(x)\sim\alpha_2(x),\ \beta_1(x)\sim\beta_2(x) α1(x)∼α2(x), β1(x)∼β2(x) as x → c x\to c x→c . Suppose lim x → c β 2 ( x ) α 2 ( x ) \lim\limits_{x\to c}\frac{\beta_2(x)}{\alpha_2(x)} x→climα2(x)β2(x) exists. Then
lim x → c β 1 ( x ) α 1 ( x ) = lim x → c β 2 ( x ) α 2 ( x ) \lim\limits_{x\to c}\frac{\beta_1(x)}{\alpha_1(x)}=\lim\limits_{x\to c}\frac{\beta_2(x)}{\alpha_2(x)} x→climα1(x)β1(x)=x→climα2(x)β2(x)
Chapter 3 : The Derivative
3.2 The derivative
The derivative of a function f f f is another function f ′ f^\prime f′ whose value at any number x x x is f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h f^\prime(x)=\lim\limits_{h\to0}\frac{f(x+h)-f(x)}{h} f′(x)=h→0limhf(x+h)−f(x) . If this limit does exist, we say that f f f is differentiable (可微、可导) at x x x .
Theorem A : Differentiability Implies Continuity
If f ′ ( c ) f^\prime(c) f′(c) exists, the f f f is continuous at c c c .
But, If a function
f
f
f is continuous at
c
c
c, it doesn’t follow that
f
f
f has derivative at
c
c
c .
3.3 Rules for Finding Derivatives
Theorem A : Constant Multiple Rule
( k f ) ′ ( x ) = k ⋅ f ′ ( x ) (kf)^\prime(x)=k\cdot f^\prime(x) (kf)′(x)=k⋅f′(x)
Theorem B : Sum Rule
[ f ( x ) + g ( x ) ] ′ = f ′ ( x ) + g ′ ( x ) [f(x)+g(x)]^\prime=f^\prime(x)+g^\prime(x) [f(x)+g(x)]′=f′(x)+g′(x)
Definition : Linear operator
A function L L L is called a linear operator if for all functions f f f and g g g :
- L ( k f ) = k L ( f ) L(kf)=kL(f) L(kf)=kL(f), for every constant k k k
- L ( f + g ) = L ( f ) + L ( g ) L(f+g)=L(f)+L(g) L(f+g)=L(f)+L(g)
Theorem C : Product Rule
( f ⋅ g ) ′ ( x ) = f ( x ) g ′ ( x ) + f ′ ( x ) g ( x ) (f\cdot g)^\prime(x)=f(x)g^\prime(x)+f^\prime(x)g(x) (f⋅g)′(x)=f(x)g′(x)+f′(x)g(x)
Theorem D : Qoutient Rule
( f g ) ′ ( x ) = g ( x ) f ′ ( x ) − f ( x ) g ′ ( x ) g 2 ( x ) (\frac{f}{g})^\prime(x)=\frac{g(x)f^\prime(x)-f(x)g^\prime(x)}{g^2(x)} (gf)′(x)=g2(x)g(x)f′(x)−f(x)g′(x)
3.4 Derivatives of Trigonometric Function
Theorem A
( sin x ) ′ = cos x (\sin x)^\prime=\cos x (sinx)′=cosx ( cos x ) ′ = − sin x (\cos x)^\prime=-\sin x (cosx)′=−sinx
( tan x ) ′ = sec 2 x (\tan x)^\prime=\sec^2x (tanx)′=sec2x ( cot x ) ′ = − c s c 2 x (\cot x)^\prime=-csc^2x (cotx)′=−csc2x
( sec x ) ′ = sec x tan x (\sec x)^\prime=\sec x\tan x (secx)′=secxtanx ( csc x ) ′ = − csc x cot x (\csc x)^\prime=-\csc x\cot x (cscx)′=−cscxcotx
3.5 The Chain Rule
Theorem A : Chain Rule
( f ∘ g ) ′ ( x ) = f ′ ( g ( x ) ) ⋅ g ′ ( x ) (f\circ g)^\prime(x)=f^\prime(g(x))\cdot g^\prime(x) (f∘g)′(x)=f′(g(x))⋅g′(x) or d y d x = d y d u d u d x \frac{\mathrm{d}y}{\mathrm{d}x}=\frac{\mathrm{d}y}{\mathrm{d}u}\frac{\mathrm{d}u}{\mathrm{d}x} dxdy=dudydxdu
3.6 Derivatives of Inverse Functions
Theorem A : Monotonicity Theorem
Let f f f be continuous on an interval I I I and differentiable at every interior point of I I I .
(1) If f ′ ( x ) > 0 f^\prime(x)>0 f′(x)>0 for all x x x interior to I I I , then f f f is increasing on I I I .
(2) If f ′ ( x ) < 0 f^\prime(x)<0 f′(x)<0 for all x x x interior to I I I , then f f f is decreasing on I I I .
Theorem B : Inverse Function Theorem
( f − 1 ) ′ ( y ) = 1 f ′ ( x ) (f^{-1})^\prime(y)=\frac{1}{f^\prime(x)} (f−1)′(y)=f′(x)1
3.7 Higher-order Derivatives
f ′ ′ ( x ) = d d x ( f ′ ( x ) ) f^{\prime\prime}(x)=\frac{\mathrm{d}}{\mathrm{dx}}(f^\prime(x)) f′′(x)=dxd(f′(x))
f ′ ′ ′ ( x ) = d d x ( f ′ ′ ( x ) ) f^{\prime\prime\prime}(x)=\frac{\mathrm{d}}{\mathrm{dx}}(f^{\prime\prime}(x)) f′′′(x)=dxd(f′′(x))
f ( 4 ) ( x ) = d d x ( f ′ ′ ′ ( x ) ) f^{(4)}(x)=\frac{\mathrm{d}}{\mathrm{dx}}(f^{\prime\prime\prime}(x)) f(4)(x)=dxd(f′′′(x))
3.8 Implicit Differentiation (隐函数求导法)
The method just illustrated for finding d y d x \frac{\mathrm{dy}}{\mathrm{dx}} dxdy without first solving the given equation for y y y explicitly in terms of x x x is called Implicit Differentiation.
3.9 Related Rates (相关变化率问题)
3.10 Derivatives of Exponential and Logarithmic Functions
(1) ( ln x ) ′ = 1 x (\ln x)^\prime=\frac{1}{x} (lnx)′=x1 (2) ( e x ) ′ = e x (e^x)^\prime=e^x (ex)′=ex
(3) ( log a x ) ′ = 1 x ln a (\log_ax)^\prime=\frac{1}{x\ln a} (logax)′=xlna1 (4) ( a x ) ′ = a x ln a (a^x)^\prime=a^x\ln a (ax)′=axlna
3.11 Derivatives of Inverse Trigonometric Functions
(1) ( arcsin x ) ′ = 1 1 − x 2 , − 1 < x < 1 (\arcsin x)^\prime=\frac{1}{\sqrt{1-x^2}},\ -1<x<1 (arcsinx)′=1−x21, −1<x<1
(2) ( arccos x ) ′ = − 1 1 − x 2 , − 1 < x < 1 (\arccos x)^\prime=-\frac{1}{\sqrt{1-x^2}},\ -1<x<1 (arccosx)′=−1−x21, −1<x<1
(3) ( arctan x ) ′ = 1 1 + x 2 (\arctan x)^\prime=\frac{1}{1+x^2} (arctanx)′=1+x21
3.12 Differentials and Approximations (微分和近似)
3.12.1 Differentials
d x = Δ x \mathrm{d}x=\Delta x dx=Δx d y = f ′ ( x ) d x \mathrm{d}y=f^\prime(x)\mathrm{d}x dy=f′(x)dx
d x = Δ x \mathrm{d}x=\Delta x dx=Δx is called the differential of the independent variable x x x
d y = f ′ ( x ) d x \mathrm{d}y=f^\prime(x)\mathrm{d}x dy=f′(x)dx is called the differential of the dependent variable y y y
3.12.2 Approximations
f
(
x
0
+
Δ
x
)
)
≈
f
(
x
0
)
+
d
y
=
f
(
x
0
)
+
f
′
(
x
0
)
Δ
x
f(x_0+\Delta x))\thickapprox f(x_0)+\mathrm{d}y=f(x_0)+f^\prime(x_0)\Delta x
f(x0+Δx))≈f(x0)+dy=f(x0)+f′(x0)Δx
3.12.3 Linear Approximation (线性逼近)
If f f f is differentiable at a a a , then the tangent line to f f f at ( a , f ( a ) ) (a,f(a)) (a,f(a)) is given by :
L ( x ) = f ( a ) + f ′ ( a ) ( x − a ) L(x) = f(a)+f^\prime(a)(x-a) L(x)=f(a)+f′(a)(x−a)
The function L ( x ) L(x) L(x) is called the linear approximation to the function f f f at a a a .
Chapter 4 : Applications of the Derivative
4.1 Maxima and Minima
Let S S S , the domain of f f f , contain the point c c c . We say that :
(i) f ( c ) f(c) f(c) is the maximum value of f f f on S S S if f ( c ) ≥ f ( x ) f(c)\ge f(x) f(c)≥f(x) for all x x x in S S S .
(ii) f ( c ) f(c) f(c) is the minimum value of f f f on S S S if f ( c ) ≤ f ( x ) f(c)\le f(x) f(c)≤f(x) for all x x x in S S S .
(iii) f ( c ) f(c) f(c) is an extreme value of f f f on S S S if it is either maximum value or the minimum value.
(iv) the function we want to maximize or minimize is the objective function.
Theorem A : Max-Min Existence Theorem
If f f f is continuous on a closed interval [ a , b ] [a,b] [a,b] , then f f f attains both a maximum value and a minimum value there.
Theorem B : Critical Point Theorem
Let
f
f
f be defined on an interval
I
I
I containing the point
c
c
c. If
f
(
c
)
f(c)
f(c) is an extreme value, then
c
c
c must be a critical point; that is, either
c
c
c is :
(i) an end point of
I
I
I
(ii) a stationary point of
f
f
f; that is, a point where
f
′
(
c
)
=
0
f^\prime(c)=0
f′(c)=0
(iii) a singular point of
f
f
f; that is, a point where
f
′
(
c
)
f^\prime(c)
f′(c) doesn’t exist
4.2 Monotonicity and Concavity
4.2.1 The First Derivative and Monotonicity
Let
f
f
f be continuous on an interval
I
I
I and differentiable at every interior point of
I
I
I .
(1) If
f
′
(
x
)
>
0
f^\prime(x)>0
f′(x)>0 for all
x
x
x interior to
I
I
I, then
f
f
f is increasing on
I
I
I .
(2) If
f
′
(
x
)
<
0
f^\prime(x)<0
f′(x)<0 for all
x
x
x interior to
I
I
I, then
f
f
f is decreasing on
I
I
I .
4.2.2 The Second Derivative and Concavity
Let
f
f
f be differentiable on an open interval
I
I
I . We say that
f
f
f is concave up on
I
I
I if
f
′
f^\prime
f′ increasing on
I
I
I (
f
′
′
(
x
)
>
0
f^{\prime\prime}(x)>0
f′′(x)>0), and concave down on
I
I
I if
f
′
f^\prime
f′ is decreasing on
I
I
I (
f
′
′
(
x
)
<
0
f^{\prime\prime}(x)<0
f′′(x)<0) .
4.2.3 Inflection Points (拐点)
We call ( c , f ( c ) ) (c,f(c)) (c,f(c)) is an inflection point of f f f if f f f is concave up on one side and concave down on the other side.
4.3 Local Extrema and Extrema on Open Intervals
(i) f ( c ) f(c) f(c) is a local maximum value (极大值) of f f f if there is an interval ( a , b ) (a,b) (a,b) containing c c c such that f ( c ) f(c) f(c) is the maximum value (最大值) of f f f on ( a , b ) ∩ S (a,b)\cap S (a,b)∩S
(ii) f ( c ) f(c) f(c) is a local minimum value (极小值) of f f f if there is an interval ( a , b ) (a,b) (a,b) containing c c c such that f ( c ) f(c) f(c) is the minimu;m value (最小值) of f f f on ( a , b ) ∩ S (a,b)\cap S (a,b)∩S
(iii) f ( c ) f(c) f(c) is a local extreme (极值) of f f f if it is either a local maximum or a local minimum value
Theorem A : First Derivative Test
Let
f
f
f be continuous on an open interval
(
a
,
b
)
(a,b)
(a,b) containing a critical point
c
c
c.
(i) If
f
′
(
x
)
>
0
f^\prime(x)>0
f′(x)>0 for all x in
(
a
,
c
)
(a,c)
(a,c) and
f
′
(
x
)
<
0
f^\prime(x)<0
f′(x)<0 for all
x
x
x in
(
c
,
b
)
(c,b)
(c,b) , then
f
(
c
)
f(c)
f(c) is a local maximum value of
f
f
f.
(ii) If
f
′
(
x
)
<
0
f^\prime(x)<0
f′(x)<0 for all
x
x
x in
(
a
,
c
)
(a,c)
(a,c) and
f
′
(
x
)
>
0
f^\prime(x)>0
f′(x)>0 for all
x
x
x in
(
c
,
b
)
(c,b)
(c,b) , then
f
(
c
)
f(c)
f(c) is a local minimum value of
f
f
f.
Theorem B : Second Derivative Test
Let
f
′
f^\prime
f′ and
f
′
′
f^{\prime\prime}
f′′ exist at every point in an open interval
(
a
,
b
)
(a,b)
(a,b) containing
c
c
c , and suppose that
f
′
(
c
)
=
0
f^\prime(c)=0
f′(c)=0
(i) If
f
′
′
(
c
)
<
0
f^{\prime\prime}(c)<0
f′′(c)<0,
f
(
c
)
f(c)
f(c) is a local maximum value of
f
f
f.
(ii) If
f
′
′
(
c
)
>
0
f^{\prime\prime}(c)>0
f′′(c)>0,
f
(
c
)
f(c)
f(c) is a local minimum value of
f
f
f.
4.6 Mean Value Theorem for Derivatives
Theorem A
If f f f is continuous on a closed interval [ a , b ] [a,b] [a,b] and differentiable on its interior ( a , b ) (a,b) (a,b) , then there is at least one number c c c in ( a , b ) (a,b) (a,b) where
f ( b ) − f ( a ) b − a = f ′ ( c ) \frac{f(b)-f(a)}{b-a}=f^\prime(c) b−af(b)−f(a)=f′(c)
or, equivalently, where f ( b ) − f ( a ) = f ′ ( c ) ( b − a ) f(b)-f(a)=f^\prime(c)(b-a) f(b)−f(a)=f′(c)(b−a)
Rolle’s Theorem
If f f f is continuous on a closed interval [ a , b ] [a,b] [a,b] and differentiable on its interior ( a , b ) (a,b) (a,b), and if f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b), then there is at least one number c c c in ( a , b ) (a,b) (a,b) where f ′ ( c ) = 0 f^\prime(c)=0 f′(c)=0.
Theorem B
If F ′ ( x ) = G ′ ( x ) F^\prime(x)=G^\prime(x) F′(x)=G′(x) for all x in ( a , b ) (a,b) (a,b), then there is a constant C C C such that
F ( x ) = G ( x ) + C F(x)=G(x)+C F(x)=G(x)+C
for all x x x in ( a , b ) (a,b) (a,b)
4.7 L’Hopital’s Rule
Theorem A : L’Hopital’s Rule for forms of type 0 0 \frac{0}{0} 00
Suppose that lim x → u f ( x ) = lim x → u g ( x ) = 0 \lim\limits_{x\to u}f(x)=\lim\limits_{x\to u}g(x)=0 x→ulimf(x)=x→ulimg(x)=0
If lim x → u f ′ ( x ) g ′ ( x ) \lim\limits_{x\to u}\frac{f^\prime(x)}{g^\prime(x)} x→ulimg′(x)f′(x) exists or ( − ∞ o r ∞ ) (-\infty\ or\ \infty) (−∞ or ∞), then :
lim x → u f ( x ) g ( x ) = lim x → u f ′ ( x ) g ′ ( x ) \lim\limits_{x\to u}\frac{f(x)}{g(x)}=\lim\limits_{x\to u}\frac{f^\prime(x)}{g^\prime(x)} x→ulimg(x)f(x)=x→ulimg′(x)f′(x)
Theorem B : L’Hopital’s Rule for forms of type ∞ ∞ \frac{\infty}{\infty} ∞∞
Suppose that lim x → u ∣ f ( x ) ∣ = lim x → u ∣ g ( x ) ∣ = ∞ \lim\limits_{x\to u}|f(x)|=\lim\limits_{x\to u}|g(x)|=\infty x→ulim∣f(x)∣=x→ulim∣g(x)∣=∞
If lim x → u f ′ ( x ) g ′ ( x ) \lim\limits_{x\to u}\frac{f^\prime(x)}{g^\prime(x)} x→ulimg′(x)f′(x) exists or ( − ∞ o r ∞ ) (-\infty\ or\ \infty) (−∞ or ∞), then :
lim x → u f ( x ) g ( x ) = lim x → u f ′ ( x ) g ′ ( x ) \lim\limits_{x\to u}\frac{f(x)}{g(x)}=\lim\limits_{x\to u}\frac{f^\prime(x)}{g^\prime(x)} x→ulimg(x)f(x)=x→ulimg′(x)f′(x)
Theorem C : L’Hopital’s Rule for forms of type 0 ⋅ ∞ 0\cdot\infty 0⋅∞ and ∞ − ∞ \infty-\infty ∞−∞
(1) 0 ⋅ ∞ ⇒ 0 0 0\cdot\infty\Rightarrow\frac{0}{0} 0⋅∞⇒00
(2) ∞ − ∞ \infty-\infty ∞−∞ : 通分 + 洛必达
Theorem D : L’Hopital’s Rule for forms of type 1 ∞ , ∞ 0 , 0 0 1^\infty,\ \infty^0,\ 0^0 1∞, ∞0, 00
两边取对数。
4.10 Antiderivatives and Indefinite Integral
We call F F F an antiderivatives of f f f on the interval I I I if D x F ( x ) = f ( x ) D_xF(x)=f(x) DxF(x)=f(x) on I I I, that is, if F ′ ( x ) = f ( x ) F^\prime(x)=f(x) F′(x)=f(x) on I I I.
If F ′ ( x ) = f ( x ) F'(x)=f(x) F′(x)=f(x) on the interval I I I , then F ( x ) F(x) F(x) is called an antiderivative (反导数) or primitive function (原函数) on I I I.
F ( x ) + C F(x)+C F(x)+C, where C C C is an arbitrary constant, is called the general antiderivative or indefinite integral (不定积分) of f f f on I I I.
The indefinite integral of f ( x ) f(x) f(x) is denoted by ∫ f ( x ) d x = F ( x ) + C \int f(x)\mathrm{d}x=F(x)+C ∫f(x)dx=F(x)+C.
Integration and differentiation are inverse operations to each other :
D x ∫ f ( x ) d x = f ( x ) D_x\int f(x)\mathrm{d}x=f(x) Dx∫f(x)dx=f(x) ∫ D x F ( x ) d x = F ( x ) + C \int D_xF(x)\mathrm{d}x=F(x)+C ∫DxF(x)dx=F(x)+C
Theorem A
Theorem B : Indefinite Integral Is a Linear Operator
∫ k f ( x ) d x = k ∫ f ( x ) d x . k ≠ 0 \int kf(x)\mathrm{d}x=k\int f(x)\mathrm{d}x.\ k\ne0 ∫kf(x)dx=k∫f(x)dx. k=0
∫ [ f ( x ) + g ( x ) ] d x = ∫ f ( x ) d x + ∫ g ( x ) d x \int[f(x)+g(x)]\mathrm{d}x=\int f(x)\mathrm{d}x+\int g(x)\mathrm{d}x ∫[f(x)+g(x)]dx=∫f(x)dx+∫g(x)dx
Theorem C : Substitution Rule for Indefinite Integrals
Let u = g ( x ) u=g(x) u=g(x)
∫ f ( g ( x ) ) g ′ ( x ) d x = ∫ f ( u ) d u = F ( u ) + C = F ( g ( x ) ) + C \int f(g(x))g^\prime(x)\mathrm{d}x=\int f(u)du=F(u)+C=F(g(x))+C ∫f(g(x))g′(x)dx=∫f(u)du=F(u)+C=F(g(x))+C
4.11 Introduction to Differential Equations
Separation of Variables (分离变量法)
Chapter 5 : The Definite Integral
5.2 The Definite Integral
Definition : Riemann Sum
Consider A Partition P P P of the interval [ a , b ] [a,b] [a,b],
a = x 0 < x 1 < x 2 < ⋅ ⋅ ⋅ < x n − 1 < x n < = b , Δ x i = x i < x i − 1 a=x_0<x_1<x_2<···<x_{n-1}<x_n<=b,\ \Delta x_i=x_i<x_{i-1} a=x0<x1<x2<⋅⋅⋅<xn−1<xn<=b, Δxi=xi<xi−1
On each subinterval [ x i − 1 , x i ] [x_{i-1},x_i] [xi−1,xi] , pich a sample point x ˉ i \bar{x}_i xˉi
We call the sum R P = ∑ i = 1 n f ( x ˉ i ) Δ x i R_P=\sum\limits^n_{i=1}f(\bar{x}_i)\Delta x_i RP=i=1∑nf(xˉi)Δxi a Riemann Sum of f f f corresponding to the partion P P P .
Definition : Definite Integral
Let f f f be a function that is defined on the closed interval [ a , b ] [a,b] [a,b] . If lim ∣ P ∣ → 0 ∑ i = 1 n f ( x ˉ i ) Δ x i \lim\limits_{|P|\to0}\sum\limits_{i=1}^{n}f(\bar{x}_i)\Delta x_i ∣P∣→0limi=1∑nf(xˉi)Δxi exists, we say f f f is integrable on [ a , b ] [a,b] [a,b]. Moreover, ∫ a b f ( x ) d x \int^{b}_{a}f(x)\mathrm{d}x ∫abf(x)dx called the definite integral or Riemann integral of f f f from a a a to b b b , is then given by ∫ a b f ( x ) d x = lim ∣ P ∣ → 0 ∑ i = 1 n f ( x ˉ i ) Δ x i \int^{b}_{a}f(x)\mathrm{d}x=\lim\limits_{|P|\to0}\sum\limits_{i=1}^{n}f(\bar{x}_i)\Delta x_i ∫abf(x)dx=∣P∣→0limi=1∑nf(xˉi)Δxi
Theorem A : Integrability Theorem
If
f
f
f is bounded on
[
a
,
b
]
[a,b]
[a,b] and if it is continuous there except at a finite number of points, then
f
f
f is integrable on
[
a
,
b
]
[a,b]
[a,b] .
In particular, if
f
f
f is continuous on the whole interval, it is integrable on
[
a
,
b
]
[a,b]
[a,b].
Theorem B : Interval Additive Property (区间可加性)
If f f f is integrable on an interval containing the points a , b a,b a,b and c c c, then ∫ a c f ( x ) d x = ∫ a b f ( x ) d x + ∫ b c f ( x ) d x \int^{c}_{a}f(x)\mathrm{d}x=\int^{b}_{a}f(x)\mathrm{d}x+\int^{c}_{b}f(x)\mathrm{d}x ∫acf(x)dx=∫abf(x)dx+∫bcf(x)dx
5.3 The First Fundamental Theorem of Calculus
Theorem A : The First Fundamental Theorem of Calculus
d d x ∫ a x f ( t ) d t = f ( x ) \frac{\mathrm{d}}{\mathrm{d}x}\int^x_af(t)\mathrm{d}t=f(x) dxd∫axf(t)dt=f(x)
d d x ∫ x a f ( t ) d t = − f ( x ) \frac{\mathrm{d}}{\mathrm{d}x}\int^a_xf(t)\mathrm{d}t=-f(x) dxd∫xaf(t)dt=−f(x)
Corollary :
Suppose g ( x ) , h ( x ) ∈ [ a , b ] g(x),h(x)\in[a,b] g(x),h(x)∈[a,b]. Then
( ∫ h ( x ) g ( x ) f ( t ) d t ) ′ = f [ g ( x ) ] g ′ ( x ) − f [ h ( x ) ] h ( x ) ′ (\int^{g(x)}_{h(x)}f(t)\mathrm{d}t)^\prime=f[g(x)]g^\prime(x)-f[h(x)]h(x)^\prime (∫h(x)g(x)f(t)dt)′=f[g(x)]g′(x)−f[h(x)]h(x)′
Theorem B : Comparison Property
If f ( x ) ≤ g ( x ) f(x)\le g(x) f(x)≤g(x) for all x x x in [ a , b ] [a,b] [a,b], then ∫ a b f ( x ) d x ≤ ∫ a b g ( x ) d x \int^b_af(x)\mathrm{d}x\le\int^b_ag(x)\mathrm{d}x ∫abf(x)dx≤∫abg(x)dx
but ,
∣
∫
a
b
f
(
x
)
d
x
∣
≤
∣
∫
a
b
g
(
x
)
d
x
∣
|\int^b_af(x)\mathrm{d}x|\le|\int^b_ag(x)\mathrm{d}x|
∣∫abf(x)dx∣≤∣∫abg(x)dx∣ is not exactly true.
Theorem C : Boundedness Property
If
f
f
f is integrable on
[
a
,
b
]
[a,b]
[a,b] and
m
≤
f
(
x
)
≤
M
m\le f(x)\le M
m≤f(x)≤M for all
x
x
x in
[
a
,
b
]
[a,b]
[a,b] , then
m
(
b
−
a
)
≤
∫
a
b
f
(
x
)
d
x
≤
M
(
a
−
b
)
m(b-a)\le\int^b_af(x)\mathrm{d}x\le M(a-b)
m(b−a)≤∫abf(x)dx≤M(a−b)
Theorem D : Linearity of the Definite Integral
(1) ∫ a b k f ( x ) d x = k ∫ a b f ( x ) d x \int^b_akf(x)\mathrm{d}x=k\int^b_af(x)\mathrm{d}x ∫abkf(x)dx=k∫abf(x)dx
(2) ∫ a b [ f ( x ) ± g ( x ) ] d x = ∫ a b f ( x ) d x ± ∫ a b g ( x ) d x \int^b_a[f(x)\pm g(x)]\mathrm{d}x=\int^b_af(x)\mathrm{d}x\pm \int^b_ag(x)\mathrm{d}x ∫ab[f(x)±g(x)]dx=∫abf(x)dx±∫abg(x)dx
5.4 The Second Fundamental Theorem of Calculus
Theorem A
∫ a b f ( x ) d x = F ( b ) − F ( a ) = [ F ( x ) ] a b \int^b_af(x)\mathrm{d}x=F(b)-F(a)=[F(x)]^b_a ∫abf(x)dx=F(b)−F(a)=[F(x)]ab or F ( x ) ∣ a b F(x)|^b_a F(x)∣ab
Theorem B : Substitution Rule for Indefinite Integrals and Definite Integrals
Let u = g ( x ) u=g(x) u=g(x)
∫ f ( g ( x ) ) g ′ ( x ) d x = ∫ f ( u ) d u = F ( u ) + C = F ( g ( x ) ) + C \int f(g(x))g^\prime(x)\mathrm{d}x=\int f(u)\mathrm{d}u=F(u)+C=F(g(x))+C ∫f(g(x))g′(x)dx=∫f(u)du=F(u)+C=F(g(x))+C
∫
a
b
f
(
g
(
x
)
)
g
′
(
x
)
d
x
=
∫
g
(
a
)
g
(
b
)
f
(
u
)
d
u
=
[
F
(
u
)
]
g
(
a
)
g
(
b
)
\int^b_af(g(x))g^\prime(x)\mathrm{d}x=\int^{g(b)}_{g(a)}f(u)\mathrm{d}u=[F(u)]^{g(b)}_{g(a)}
∫abf(g(x))g′(x)dx=∫g(a)g(b)f(u)du=[F(u)]g(a)g(b)
Theorem C : Symmetry Theorem
If f f f is an even function : ∫ − a a f ( x ) d x = 2 ∫ 0 a f ( x ) d x \int^a_{-a}f(x)\mathrm{d}x=2\int^a_0f(x)\mathrm{d}x ∫−aaf(x)dx=2∫0af(x)dx
If f f f is an odd function : ∫ − a a f ( x ) d x = 0 \int^a_{-a}f(x)\mathrm{d}x=0 ∫−aaf(x)dx=0
Theorem D : Periodic function
If f f f is a periodic function with period p p p, then :
∫ a + p b + p f ( x ) d x = ∫ a b f ( x ) d x \int^{b+p}_{a+p}f(x)\mathrm{d}x=\int^b_af(x)\mathrm{d}x ∫a+pb+pf(x)dx=∫abf(x)dx
∫ a a + n p f ( x ) d x = n ∫ 0 p f ( x ) d x \int^{a+np}_af(x)\mathrm{d}x=n\int^p_0f(x)\mathrm{d}x ∫aa+npf(x)dx=n∫0pf(x)dx
5.5 The Mean Value Theorem for Integrals
Definition : Average Value of a Function
If f f f is integrable on the interval [ a , b ] [a,b] [a,b], then the average value of f f f on [ a , b ] [a,b] [a,b] is 1 b − a ∫ a b f ( x ) d x \frac{1}{b-a}\int^b_af(x)\mathrm{d}x b−a1∫abf(x)dx .
Theorem A : Mean Value Theorem for Integrals
If f f f is continuous on the inteval [ a , b ] [a,b] [a,b] , then there is a number c ∈ ( a , b ) c\in(a,b) c∈(a,b) such that : f ( c ) = 1 b − a ∫ a b f ( x ) d x f(c)=\frac{1}{b-a}\int^b_af(x)\mathrm{d}x f(c)=b−a1∫abf(x)dx
Chapter 6 : Applications of the Integral
6.1 The Area of a Plane Region
Step 1: Sketch the region, find the intersection points.
Step 2: Slice it into thin pieces.
Step 3: Approximate and get a definite integral.
6.2 Volumes of Solids of Revolution (旋转体)
6.2.1 Method of Slicing (切片法)
V = ∫ a b π [ f ( x ) ] 2 d x V=\int^b_a\pi [f(x)]^2\mathrm{d}x V=∫abπ[f(x)]2dx
Washers
V = ∫ a b π [ f ( x ) ] 2 d x − ∫ a b π [ g ( x ) ] 2 d x V=\int^b_a\pi [f(x)]^2\mathrm{d}x-\int^b_a\pi [g(x)]^2\mathrm{d}x V=∫abπ[f(x)]2dx−∫abπ[g(x)]2dx
6.2.2 Method of Shells (薄壳法)
V = ∫ a b 2 π x f ( x ) d x V=\int^b_a2\pi xf(x)\mathrm{d}x V=∫ab2πxf(x)dx
6.3 Length of a Plane Curve
Definition : A curve determined by the Parametric Equations
Let t t t be a parameter. If x x x and y y y are expressed in terms of t t t. We say that x = f ( t ) , y = g ( t ) , a ≤ t ≤ b x=f(t),\ y=g(t),\ a\le t\le b x=f(t), y=g(t), a≤t≤b are parametric equations describing a curve. And the curve is said to be determined by the parametric equations x = f ( t ) x=f(t) x=f(t) and y = g ( t ) y=g(t) y=g(t).
Definition : Smooth
A place curve is smooth if it is determined by a pair of parametric equations x = f ( t ) , y = g ( t ) , a ≤ t ≤ b x=f(t),\ y=g(t),\ a\le t\le b x=f(t), y=g(t), a≤t≤b, where f ′ f^\prime f′ and g ′ g^\prime g′ exist and are continuous on [ a , b ] [a,b] [a,b], and are not simultaneously (同时地) zero on ( a , b ) (a,b) (a,b).
L = ∫ a b ( d x d t ) 2 + ( d y d t ) 2 d t L=\int^b_a\sqrt{(\frac{\mathrm{d}x}{\mathrm{d}t})^2+(\frac{\mathrm{d}y}{\mathrm{d}t})^2}\mathrm{d}t L=∫ab(dtdx)2+(dtdy)2dt
Differential of Arc Lenth
( d s ) 2 = ( d x ) 2 + ( d y ) 2 (\mathrm{d}s)^2=(\mathrm{d}x)^2+(\mathrm{d}y)^2 (ds)2=(dx)2+(dy)2
6.4 Work
W = ∫ a b F ( x ) d x W=\int^b_aF(x)\mathrm{d}x W=∫abF(x)dx
6.5 Moments (矩), Center of Mass
M = ∑ i = 1 n x i m i = ∫ a b x δ ( x ) d x M=\sum\limits^n_{i=1}x_im_i=\int^b_ax\delta(x)\mathrm{d}x M=i=1∑nximi=∫abxδ(x)dx
m = ∑ i = 1 n m i = ∫ a b δ ( x ) d x m=\sum\limits^n_{i=1}m_i=\int^b_a\delta(x)\mathrm{d}x m=i=1∑nmi=∫abδ(x)dx
x ˉ = M m = ∫ a b x δ ( x ) d x ∫ a b δ ( x ) d x \bar x=\frac{M}{m}=\frac{\int^b_ax\delta(x)\mathrm{d}x}{\int^b_a\delta(x)\mathrm{d}x} xˉ=mM=∫abδ(x)dx∫abxδ(x)dx
Chapter 7 : Techniques of Intergration and Differential Equations
7.2 Integration by Parts
∫ u ( x ) v ′ ( x ) d x = u ( x ) v ( x ) − ∫ v ( x ) u ′ ( x ) d x + C \int u(x)v^\prime(x)\mathrm dx=u(x)v(x)-\int v(x)u^\prime(x)\mathrm dx+C ∫u(x)v′(x)dx=u(x)v(x)−∫v(x)u′(x)dx+C
∫ a b u ( x ) v ′ ( x ) d x = [ u ( x ) v ( x ) ] a b − ∫ a b v ( x ) u ′ ( x ) d x \int^b_au(x)v^\prime(x)\mathrm dx=[u(x)v(x)]^b_a-\int^b_av(x)u^\prime(x)\mathrm dx ∫abu(x)v′(x)dx=[u(x)v(x)]ab−∫abv(x)u′(x)dx
∫ 0 π 2 sin n x d x = n − 1 n ∫ 0 π 2 sin n − 2 x d x \int^{\frac{\pi}{2}}_0\sin^nx\mathrm dx=\frac{n-1}{n}\int^{\frac{\pi}{2}}_0\sin^{n-2}x\mathrm dx ∫02πsinnxdx=nn−1∫02πsinn−2xdx
7.3 Some Trigonometric Integrals
Type 1 : ∫ sin n x d x , ∫ cos n x d x \int\sin^nx\mathrm dx\ ,\ \int\cos^nx\mathrm dx ∫sinnxdx , ∫cosnxdx
- When n n n is odd positive integer : Taking out either the factor sin x \sin x sinx or cos x \cos x cosx at first, then use the identity sin 2 x + cos 2 x = 1 \sin^2x+\cos^2x=1 sin2x+cos2x=1
- When n n n is even positive integer : sin 2 x = 1 − cos 2 x 2 \sin^2x=\frac{1-\cos2x}{2} sin2x=21−cos2x or cos 2 x = 1 + cos 2 x 2 \cos^2x=\frac{1+\cos2x}{2} cos2x=21+cos2x
Type 2 : ∫ sin m x cos n x d x \int\sin^mx\cos^nx\mathrm dx ∫sinmxcosnxdx
- If either m m m or n n n is an odd positive integer : factor out sin x \sin x sinx or cos x \cos x cosx and use the identity sin 2 x + cos 2 x = 1 \sin^2x+\cos^2x=1 sin2x+cos2x=1
- If both m m m or n n n are even positive integers : sin 2 x = 1 − cos 2 x 2 \sin^2x=\frac{1-\cos2x}{2} sin2x=21−cos2x or cos 2 x = 1 + cos 2 x 2 \cos^2x=\frac{1+\cos2x}{2} cos2x=21+cos2x
Type 3 : ∫ sin m x cos n x d x , ∫ sin m x cos n x d x , ∫ cos m x cos n x d x \int\sin mx\cos nx\mathrm dx\ ,\ \int\sin mx\cos nx\mathrm dx\ ,\ \int\cos mx\cos nx\mathrm dx ∫sinmxcosnxdx , ∫sinmxcosnxdx , ∫cosmxcosnxdx
- sin m x cos n x = 1 2 [ sin ( m + n ) x + sin ( m − n ) x ] \sin mx\cos nx=\frac{1}{2}[\sin(m+n)x+\sin(m-n)x] sinmxcosnx=21[sin(m+n)x+sin(m−n)x]
- sin m x sin n x = − 1 2 [ cos ( m + n ) x − cos ( m − n ) x ] \sin mx\sin nx=-\frac{1}{2}[\cos(m+n)x-\cos(m-n)x] sinmxsinnx=−21[cos(m+n)x−cos(m−n)x]
- cos m x cos n x = 1 2 [ cos ( m + n ) x + cos ( m − n ) x ] \cos mx\cos nx=\frac{1}{2}[\cos(m+n)x+\cos(m-n)x] cosmxcosnx=21[cos(m+n)x+cos(m−n)x]
7.4 Rationalizing Substitutions
Type 1 :
a
x
+
b
n
\sqrt[n]{ax+b}
nax+b
Type 2 :
a
2
−
x
2
,
a
2
+
x
2
,
x
2
−
a
2
\sqrt{a^2-x^2}\ ,\ \sqrt{a^2+x^2}\ ,\ \sqrt{x^2-a^2}
a2−x2 , a2+x2 , x2−a2
7.7 First-Order Linear Differential Equations
A differential equation in the form d y d x + P ( x ) y = Q ( x ) \frac{\mathrm dy}{\mathrm dx}+P(x)y=Q(x) dxdy+P(x)y=Q(x) is called a first-order linear differential equation where P ( x ) P(x) P(x) and Q ( x ) Q(x) Q(x) are functions of x x x only. For a first-order linear differential equation function I ( x ) = e ∫ P ( x ) d x I(x)=e^{\int P(x)\mathrm dx} I(x)=e∫P(x)dx is called the integrating factor.
y = 1 I ( x ) ⋅ ∫ I ( x ) Q ( x ) d x y=\frac{1}{I(x)}\cdot\int I(x)Q(x)\mathrm dx y=I(x)1⋅∫I(x)Q(x)dx
A equation in the form
d
y
d
x
+
P
(
x
)
y
=
Q
(
x
)
y
n
\frac{\mathrm dy}{\mathrm dx}+P(x)y=Q(x)y^n
dxdy+P(x)y=Q(x)yn
Let
u
=
y
1
−
n
u=y^{1-n}
u=y1−n
d
u
d
x
+
(
1
−
n
)
P
(
x
)
u
=
(
1
−
n
)
Q
(
x
)
\frac{\mathrm du}{\mathrm dx}+(1-n)P(x)u=(1-n)Q(x)
dxdu+(1−n)P(x)u=(1−n)Q(x)
A equation in the form
d
y
d
x
+
P
(
x
)
e
y
=
Q
(
x
)
\frac{\mathrm dy}{\mathrm dx}+P(x)e^y=Q(x)
dxdy+P(x)ey=Q(x)
Let
u
=
e
−
y
u=e^{-y}
u=e−y
Chapter 8 : Improper Integrals
8.1 Infinite Limits of Integration
8.1.1 One Infinite Limit
∫ − ∞ b f ( x ) d x = lim a → − ∞ ∫ a b f ( x ) d x \int^b_{-\infty}f(x)\mathrm dx=\lim\limits_{a\to-\infty}\int^b_af(x)\mathrm dx ∫−∞bf(x)dx=a→−∞lim∫abf(x)dx
∫ a ∞ f ( x ) d x = lim b → ∞ ∫ a b f ( x ) d x \int^{\infty}_af(x)\mathrm dx=\lim\limits_{b\to\infty}\int^b_af(x)\mathrm dx ∫a∞f(x)dx=b→∞lim∫abf(x)dx
If the limits on the right exist and have finite values, then we say that the corresponding improper integrals converge (收敛) and have those values. Otherwise, the integrals are said to diverge (发散).
8.1.2 Both Limits Infinite
∫ − ∞ ∞ f ( x ) d x \int^\infty_{-\infty}f(x)\mathrm dx ∫−∞∞f(x)dx
If both ∫ − ∞ 0 f ( x ) d x \int^0_{-\infty}f(x)\mathrm dx ∫−∞0f(x)dx and ∫ 0 ∞ f ( x ) d x \ \int^\infty_0f(x)\mathrm dx ∫0∞f(x)dx converge, then ∫ − ∞ ∞ f ( x ) d x \int^\infty_{-\infty}f(x)\mathrm dx ∫−∞∞f(x)dx is said to converge and have value ∫ − ∞ ∞ f ( x ) d x = ∫ − ∞ 0 f ( x ) d x + ∫ 0 ∞ f ( x ) d x \int^\infty_{-\infty}f(x)\mathrm dx=\int^0_{-\infty}f(x)\mathrm dx+\int^\infty_0f(x)\mathrm dx ∫−∞∞f(x)dx=∫−∞0f(x)dx+∫0∞f(x)dx . Otherwise, ∫ − ∞ ∞ f ( x ) d x \int^\infty_{-\infty}f(x)\mathrm dx ∫−∞∞f(x)dx diverges.
洋洋洒洒 3w字,努力将所有知识点记了下来,也不知道会有多大用处,但如果对你起到作用了的话,请务必 关注+点赞+收藏 感激不尽。临表涕零,不知所言。