C/C++中,对于辗转相除法的理解

本文通过一个例子详细解释了如何计算两个数的最大公约数(GCD),例如35和28。当35除以28余7时,如果7是28的倍数,它也是35的倍数,因此7即为这两个数的最大公约数。文中还提供了一段递归代码来计算任意两个数的最大公约数。
摘要由CSDN通过智能技术生成

图片来源https://blog.csdn.net/qq_31828515/article/details/51812154

重点讲解下图中的列子2。

 当将35对28取余的时候,就好比把35分成了28+7,即35=28+7。

如果,7,这个多出来的顽固分子是28的倍数,那么肯定也是28+7=35的倍数。

即7为35和28的最大公约数。

附上递归代码。

int gcd(int a,int b)
{
if (a%b==0)
return(b);
else
return(gcd(b,a%b));
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SQ_ZYX

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值