题目
给定 n 个正整数 ai,对于每个整数 ai,请你按照从小到大的顺序输出它的所有约数
第一行包含整数 n
接下来 n 行,每行包含一个整数 ai
输入:
2
6
8
输出:
1 2 3 6
1 2 4 8
public class 约数_试除法判定 {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int m = in.nextInt();
//调用以及输出处理
while (m-- > 0) {
int x = in.nextInt();
ArrayList<Integer> res = find_divisor_op(x);
for (int i : res) System.out.print(i + " ");
System.out.println();
}
}
//基础解法,如果能被整除,就说明i是n的约数,时间复杂度为O(n)
public static ArrayList<Integer> find_divisor_base(int n) {
ArrayList<Integer> q = new ArrayList<>();
for (int i = 1; i<=n; i++) {
if (n % i == 0) q.add(i);
}
return q;
}
//优化版本,i | n, n = i * j, j是一个整数,约数总是成对出现的,我们只需要找到较小的那个就能找到较大的那个
//所以和找质数差不多,判断小于等于根号n的约数即可, 时间复杂度为O(根号n)
public static ArrayList<Integer> find_divisor_op(int n) {
ArrayList<Integer> q = new ArrayList<>();
for (int i = 1; i <= n/i; i++) {
if (n % i == 0) {
q.add(i);
if (i*i != n) {
q.add(n / i); //特判防止类似2*2=4,添加两次2这种情况
}
}
}
Collections.sort(q);
return q;
}
}