题目描述
判断一个点与已知三角形的位置关系。
输入输出格式
输入格式:
前三行:每行一个坐标,表示该三角形的三个顶点
第四行:一个点的坐标,试判断该点与前三个点围成三角形的位置关系
(详见样例)
所有坐标值均为整数。
输出格式:
若点在三角形内(不含边界),输出1;
若点在三角形外(不含边界),输出2;
若点在三角形边界上(不含顶点),输出3;
若点在三角形顶点上,输出4。
输入输出样例
输入样例#1:
(0,0) (3,0) (0,3) (1,1)
输出样例#1:
1
说明
【数据规模与约定】
对于100%数据,0<=所有点的横、纵坐标<=100
思路:
- 先用叉积求出原三角形面积ss
- 将第四个点与三角形的三个顶点连起来
- 分别求出三个三角形的面积,分别为s1,s2,s3
- 判断:
- 如果三个三角形面积之和等于原三角形面积则不再三角形外(ss=s1+s2+s3)
- 一个三角形面积为零的话,这个点在边上
- 两个三角形面积为零的话,这个点在顶点上(其实在输入的时候判断也可以)
- 没有三角形面积为零的话,这个点在三角形里面
var
x,y:array[0..5]of longint;
s1,s2,s3,s4:real;
s,m,i,j,n,t,t2,ans,sum:longint;
a:array[0..5]of string;
ss:string;
begin
for i:=1 to 4 do
begin
readln(a[i]);
t:=pos(',',a[i]);
//t2:=pos(')',a[i]);
t2:=length(a[i]);
ss:=copy(a[i],2,t-2);
val(ss,x[i]);
ss:='';
ss:=copy(a[i],t+1,t2-t-1);
val(ss,y[i]);
ss:='';
end;
s1:=(x[2]-x[1])*(y[3]-y[1])-(x[3]-x[1])*(y[2]-y[1]);
s2:=(x[1]-x[4])*(y[2]-y[4])-(x[2]-x[4])*(y[1]-y[4]);
s3:=(x[1]-x[4])*(y[3]-y[4])-(x[3]-x[4])*(y[1]-y[4]);
s4:=(x[2]-x[4])*(y[3]-y[4])-(x[3]-x[4])*(y[2]-y[4]);
s1:=abs(s1/2); s2:=abs(s2/2); s3:=abs(s3/2); s4:=abs(s4/2);
if s1=s2+s3+s4 then ans:=1
else
begin
write('2');
halt;
end;
if s2=0 then inc(sum);
if s3=0 then inc(sum);
if s4=0 then inc(sum);
if ans=1 then
begin
if sum=0 then write('1');
if sum=1 then write('3');
if sum=2 then write('4');
end;
end.