洛谷 P1355 神秘大三角

题目描述

判断一个点与已知三角形的位置关系。

输入输出格式

输入格式:

前三行:每行一个坐标,表示该三角形的三个顶点

第四行:一个点的坐标,试判断该点与前三个点围成三角形的位置关系

(详见样例)

所有坐标值均为整数。

输出格式:

若点在三角形内(不含边界),输出1;

若点在三角形外(不含边界),输出2;

若点在三角形边界上(不含顶点),输出3;

若点在三角形顶点上,输出4。

输入输出样例

输入样例#1: 
(0,0)
(3,0)
(0,3)
(1,1)
输出样例#1: 
1




说明

【数据规模与约定】

对于100%数据,0<=所有点的横、纵坐标<=100

思路:

  1. 先用叉积求出原三角形面积ss
  2. 将第四个点与三角形的三个顶点连起来
  3. 分别求出三个三角形的面积,分别为s1,s2,s3
  • 判断:
  1. 如果三个三角形面积之和等于原三角形面积则不再三角形外(ss=s1+s2+s3)
  2. 一个三角形面积为零的话,这个点在边上
  3. 两个三角形面积为零的话,这个点在顶点上(其实在输入的时候判断也可以)
  4. 没有三角形面积为零的话,这个点在三角形里面


var
 x,y:array[0..5]of longint;
 s1,s2,s3,s4:real;
 s,m,i,j,n,t,t2,ans,sum:longint;
 a:array[0..5]of string;
 ss:string;
begin
 for i:=1 to 4 do
   begin
     readln(a[i]);
     t:=pos(',',a[i]);
     //t2:=pos(')',a[i]);
     t2:=length(a[i]);
     ss:=copy(a[i],2,t-2);
     val(ss,x[i]);
     ss:='';
     ss:=copy(a[i],t+1,t2-t-1);
     val(ss,y[i]);
     ss:='';
   end;
 s1:=(x[2]-x[1])*(y[3]-y[1])-(x[3]-x[1])*(y[2]-y[1]);
 s2:=(x[1]-x[4])*(y[2]-y[4])-(x[2]-x[4])*(y[1]-y[4]);
 s3:=(x[1]-x[4])*(y[3]-y[4])-(x[3]-x[4])*(y[1]-y[4]);
 s4:=(x[2]-x[4])*(y[3]-y[4])-(x[3]-x[4])*(y[2]-y[4]);
 s1:=abs(s1/2); s2:=abs(s2/2); s3:=abs(s3/2); s4:=abs(s4/2);
 if s1=s2+s3+s4 then ans:=1
  else
    begin
      write('2');
      halt;
    end;
 if s2=0 then inc(sum);
 if s3=0 then inc(sum);
 if s4=0 then inc(sum);
 if ans=1 then
   begin
     if sum=0 then write('1');
     if sum=1 then write('3');
     if sum=2 then write('4');
   end;
end.


洛谷 P1681 最大正方形II 是一个动态规划问题,要求给定一个由 '0' 和 '1' 组成的矩阵,找出其中最大的正方形,并输出其边长。 以下是一个 C++ 编写的解答示例: ```cpp #include <iostream> #include <vector> #include <algorithm> using namespace std; int maximalSquare(vector<vector<char>>& matrix) { int rows = matrix.size(); if (rows == 0) return 0; int cols = matrix[0].size(); vector<vector<int>> dp(rows + 1, vector<int>(cols + 1, 0)); int maxSide = 0; for (int i = 1; i <= rows; i++) { for (int j = 1; j <= cols; j++) { if (matrix[i-1][j-1] == '1') { dp[i][j] = min(min(dp[i-1][j], dp[i][j-1]), dp[i-1][j-1]) + 1; maxSide = max(maxSide, dp[i][j]); } } } return maxSide * maxSide; } int main() { int n, m; cin >> n >> m; vector<vector<char>> matrix(n, vector<char>(m)); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { cin >> matrix[i][j]; } } cout << maximalSquare(matrix) << endl; return 0; } ``` 在上述代码中,我们首先定义了一个名为 `maximalSquare` 的函数,该函数接受一个二维字符矩阵 `matrix` 作为参数,返回最大正方形的边长。 在 `main` 函数中,我们首先从标准输入读取矩阵的行数和列数,并创建一个大小为 `n x m` 的二维字符矩阵。然后,我们按行读取矩阵的数据,并调用 `maximalSquare` 函数进行求解。最后,输出最大正方形的边长。 在动态规划的解法中,我们使用一个二维数组 `dp` 来记录以当前位置为右下角的最大正方形的边长。遍历矩阵中的每个元素,如果当前元素为 '1',则根据其左方、上方和左上方的最大正方形边长计算出当前位置的最大正方形边长,并更新 `dp` 数组和最大边长变量。 请注意,以上代码仅为示例,可能需要根据具体题目要求进行适当修改。同时,为了简化示例,未进行输入验证,请确保输入的矩阵符合题目要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值